
Lab Tutorial 1: Basic R
Chris M. Fiacconi

2018-07-28

In this tutorial, you will learn some of the basics of the R programming language. R is an extremely useful
tool for data manipulation, organization, analysis and reporting.

Get and Set Working Directory

When loading data into R, we need to know which directory (filepath) R thinks we’re in. Otherwise, it won’t
be able to find the file we’re looking for.
#Get working directory
currdir<-getwd()
print(currdir)

[1] "/Users/chrisfiacconi/Dropbox/Teaching/PSYC 6940/Lab Tutorials/Lab Tutorial 1"
We can also change the directory using the "Session" menu tab at the top of RStudio.
By clicking this menu and then hovering over "Set Working Directory," we can select
the folder containing the files of interest by clicking "Choose Directory."

Basic Arithmetic

We can do basic math within the R environment
5 + 10 # addition

[1] 15
total<-5 + 10 # store the sum in a new variable called total (can be named whatever you like)
total + 10 # can add number to variable name (which we set to 15 above)

[1] 25
32 - 11 # subtraction

[1] 21
8*4 # multiplication

[1] 32
144/12 #division

[1] 12
sqrt(64) # square root of 64

[1] 8
numbers<-c(13,8,22,19,25) # join numbers together in a vector
mean(numbers) # calculate mean

[1] 17.4

1

median(numbers) # calculate median

[1] 19
sd(numbers) # calculate standard deviation

[1] 6.8775
sum(numbers) # calculate sum

[1] 87
min(numbers) # get minimum value

[1] 8
max(numbers) # get maximum value

[1] 25
length(numbers) # get number of elements in "numbers" variable

[1] 5

Rounding In R

In this class, we’ll adopt the practice of rounding non-integers to two decimal places. In your assignments, be
sure to do this so you get the correct results!
example<-14.59284501
rnd_example<-round(example,digits=2)
print(rnd_example)

[1] 14.59
We could also combine the last two steps into one
print(round(example,digits=2))

[1] 14.59

Loading Data Into R

Before we can organize, transform, or perform analyses on our data, we first need to know how to load a data
file (in this course, the data files will be tab-delimited .txt files) into the R environment.

The read.table function can be used to load data files into R. The header argument indicates whether our
data file has column names. In this case (and almost always in this course), the answer is yes, so we set it to
“T” for TRUE. This data file lists the height of 40 students from UG and 20 students from Waterloo.
mydata<-read.table(file="heights.txt",header=T) # load in data file and give it a name

Often, we don’t want to list the entire data file, as they can sometimes be quite large. If we just want to look
at a portion of the data, we can used the head function, and specify the number of rows we want to see.
Let’s look at just the first 10 rows
head(mydata,n=10)

2

Subject School Height
1 1 Guelph 171.1582
2 2 Guelph 143.4576
3 3 Guelph 170.3947
4 4 Guelph 187.2626
5 5 Guelph 174.8415
6 6 Guelph 173.7353
7 7 Guelph 192.0723
8 8 Guelph 184.4495
9 9 Guelph 213.3880
10 10 Guelph 178.7792

Let’s take a closer look at the structure of our data using the str function (which stands for structure). This
command will allow us to see how R sees our data.
str(mydata)

'data.frame': 80 obs. of 3 variables:
$ Subject: int 1 2 3 4 5 6 7 8 9 10 ...
$ School : Factor w/ 2 levels "Guelph","Waterloo": 1 1 1 1 1 1 1 1 1 1 ...
$ Height : num 171 143 170 187 175 ...

Our data variable is a data.frame which is a very common and useful type of data structure in R. It consists
of multiple rows and columns, where each column can be a unique data type. For example, R identifies
the School column as a factor with two levels, while the Subject and Height columns contain numeric data.
Because the entries under the School column were text rather than numbers, R automatically thinks that
this column identifies the different levels of an independent variable. The str function provides an excellent
summary of how R structures our data.

If we want to access only one column within mydata (or any data frame), we can use the $ symbol. Let’s
store the School column as its own variable, called schools.
schools<-mydata$School

We can also access particular rows and columns of a data frame by indexing with particular row and column
numbers.
General indexing method - mydata[row,column]
mydata[4,] # get 4th row, all columns
mydata[32,3] # get 32nd row, 3rd column
mydata[5:10,1:2] # get values from rows 5 to 10 in columns 1 and 2

Data Formatting with Tidyverse

Although the basic version of R contains many useful functions, there are external packages developed by
users that are designed to make data wrangling and organization much simpler than the basic commands that
are built-in to R. One such package is tidyverse which actually contains multiple sub-packages all designed
to facilitate managing and summarizing your data.

Let’s install and load tidyverse:
install.packages("tidyverse") # make sure you are connected to the internet
library(tidyverse) # load the package into the R environment

Now, lets separate the height values according to School, and put them into two separate variables using the
filter function from the dplyr package that is part of the tidyverse.

3

Guelph<-filter(mydata,School=="Guelph") # separate the values in
the height column that come from Guelph students and store them in a new variable
called Guelph

head(Guelph,n=5)

Subject School Height
1 1 Guelph 171.1582
2 2 Guelph 143.4576
3 3 Guelph 170.3947
4 4 Guelph 187.2626
5 5 Guelph 174.8415
Waterloo<-filter(mydata,School=="Waterloo") # separate the values in
#the height column that come from Waterloo students and store them in a new variable
#called Waterloo

head(Waterloo,n=5)

Subject School Height
1 41 Waterloo 189.7056
2 42 Waterloo 184.6231
3 43 Waterloo 186.8270
4 44 Waterloo 162.7278
5 45 Waterloo 175.6068

One of my favourite commands within the dplyr package is the group_by command. This function allows
you to group your data by condition so that subsequent commands can perform functions on each group. This
is extremely useful when you want to summarize your data according to different experimental conditions.
Let’s use this function to group the data within the mydata dataframe according to the School variable.
by_school<-group_by(mydata,School) # the new variable "by_school" is now grouped according to school

Get Descriptive Statistics

Now that we grouped the data by School, we can summarize and get descriptive statistics for each condition
using the summarize function, and specifying which summary statistics we want.
school.descriptives<-summarize(by_school,Mean=mean(Height),S.Dev=sd(Height),n=length(Height))
print(school.descriptives)

A tibble: 2 x 4
School Mean S.Dev n
<fctr> <dbl> <dbl> <int>
1 Guelph 182.3318 14.07352 40
2 Waterloo 185.3012 16.00613 40

Plot/Visualize the Data

One of the most important skills in research is plotting or graphing your data. Plots are a convenient and
simple way to communicate and share your results with others. R has many, many different plotting functions,
and we’ll learn a few in this class, but we’ll start with a few simple ones right now.

4

Boxplot

Let’s create a boxplot, which displays the inter-quartile (Q1-Q3) range of our data along with the median.
Boxplots can provide us with a good idea of whether our data is normally distributed. We’ll create two
boxplots, one for each school.
boxplot(Height~School,data=mydata,las=1,ylab="Height (cm)",xlab="School")

Guelph Waterloo

140

160

180

200

School

H
ei

gh
t (

cm
)

You can save plots by clicking on the 'Export' button in the Plots tab in R Studio!

The Height~School term tells R that we want separate boxplots for our height data for each school. We also
have to tell R that the column names Height and School can be found within the mydata variable. The other
arguments are mostly concerned with aesthetics of the plot, including the orientation of the y-axis number
labels, the colour of the boxplots, and the axis labels.

Bar Graph

We can also make a bar graph to plot the mean heights for each school:
barplot(height=school.descriptives$Mean,names.arg=school.descriptives$School,beside=T,

las=1,col="lightblue",ylab="Mean Height (cm)",xlab="School",ylim=c(0,200))

axis(side=1,at=c(.1,1.3,2.6),labels=c("","","")) # add in x-axis

5

Guelph Waterloo

School

M
ea

n
H

ei
gh

t (
cm

)

0

50

100

150

200

Histogram

Finally, let’s make a histogram of our height values according to school. A histogram displays the frequency
with which particular data points occur in our sample, and they allow us to get a sense of how our data are
distributed:
par(mfrow=c(1,2)) # create two plot panels
hist(x=Guelph$Height,breaks=8,las=1,col="green",ylab="Frequency",xlab="Height",main="Guelph")
hist(x=Waterloo$Height,breaks=8,las=1,col="gold",ylab="Frequency",xlab="Height",main="Waterloo")

6

Guelph

Height

F
re

qu
en

cy

140 160 180 200 220

0

5

10

15

Waterloo

Height

F
re

qu
en

cy
140 180 220

0

2

4

6

8

10

Going From the Raw Data to Descriptive Statistics

Most experiments in psychology require that you collect multiple observations from multiple different research
participants. Therefore, your raw data will consist of values at the level of individual trials (each observation
per participant). Before we can calculate the condition-level descriptive statistics (as we did above), we
need to aggregate the data across trials for each participant. Fortunately, this task is made simple using the
commands within the tidyverse packages. First, let’s load in a representative data set.
raw.data<-read.table(file="EmoStroop.txt",header=T)
str(raw.data)

'data.frame': 5377 obs. of 4 variables:
$ Conditions : Factor w/ 2 levels "Congruent","Incongruent": 1 1 1 1 1 1 1 1 1 1 ...
$ TargValence: Factor w/ 2 levels "Negative","Positive": 2 2 2 2 2 2 2 2 2 2 ...
$ RT : int 1445 1277 1098 1256 775 1326 940 1056 746 1212 ...
$ Subj : int 1 1 1 1 1 1 1 1 1 1 ...

This dataset comes from an experiment that examined whether response conflict is perceived as emotionally
‘negative’. On each trial, participants (n = 30) were primed with either a congruent or incongruent Stroop
item (e.g., the word “blue” printed in green) followed by either a positive (e.g., “adore”), or negative (e.g.,
“murder”) word. Thus, there were a total of four conditions in the experiment, and there were 48 trials in
each condition. Reaction time (RT) classify the word as positive or negative was the dependent measure of
interest.

Each row represents a trial, with the columns representing variables indicating the condition, the RT,
and which participant was associated with a given trial. First, we need to aggregate across trials within
each condition for each participant, deriving a summary statistic that captures the central tendency of
the observations for that condition for that participant. Let’s use the group_by function followed by the
summarize function contained within the dplyr package to obtain these values:

7

by_subj.cond<-group_by(raw.data,Subj,Conditions,TargValence) # Group the
variables of interest into "chunks"
subj.medians<-summarize(by_subj.cond,medianRT=median(RT),nTrials=length(RT)) # Get median
and no. trials for each condition for each participant

print(subj.medians)

A tibble: 120 x 5
Groups: Subj, Conditions [?]
Subj Conditions TargValence medianRT nTrials
<int> <fctr> <fctr> <dbl> <int>
1 1 Congruent Negative 914.0 47
2 1 Congruent Positive 801.0 46
3 1 Incongruent Negative 899.0 44
4 1 Incongruent Positive 822.5 44
5 2 Congruent Negative 559.5 44
6 2 Congruent Positive 551.0 43
7 2 Incongruent Negative 548.0 45
8 2 Incongruent Positive 528.0 41
9 3 Congruent Negative 505.0 46
10 3 Congruent Positive 528.0 45
... with 110 more rows

The preceding code calculated the median RT for each participant for each of the four conditions, along
with the number of trials within each condition for each participant (exclusion of outliers and incorrect trials
resulted in <=48 trials per condition)

Now that we have the median RTs, let’s aggregate across participants to derive the mean RT for each
condition:
by_conds<-group_by(subj.medians,Conditions,TargValence,add=FALSE) # make sure to set add=FALSE!!
overall.means<-summarize(by_conds,meanRT=mean(medianRT),nSubj=length(medianRT))
print(overall.means)

A tibble: 4 x 4
Groups: Conditions [?]
Conditions TargValence meanRT nSubj
<fctr> <fctr> <dbl> <int>
1 Congruent Negative 686.0167 30
2 Congruent Positive 650.0167 30
3 Incongruent Negative 676.9500 30
4 Incongruent Positive 655.6833 30

Now that we have the mean RTs for each condition, we can plot these means using the interaction.plot
function to visualize the pattern of results:
with(overall.means,interaction.plot(x.factor=Conditions,

trace.factor=TargValence,response=meanRT,las=1,
ylab="Mean RT",xlab="Conflict Condition",ylim=c(640,700),
bty="n",type="b",cex=1.5,pch=c(17,19))) # make plot, remove outer box

axis(side=1,at=c(1,2),labels=c("Congruent","Incongruent")) # add in x-axis with ticks and labels

8

640

650

660

670

680

690

700

Conflict Condition

M
ea

n
R

T

Congruent Incongruent

 TargValence

Negative
Positive

Congruent Incongruent

Consistent with the idea that response conflict is inherently aversive, it appears as though negative words are
responded to faster following an incongruent Stroop prime, with the opposite pattern holding for the positive
words.

Long Vs. Wide Format

Another key aspect of data organization in R concerns the distinction between the wide and long data
formats. To this point, the data have been organized in long format, which is the format that R prefers. In
the long format, each row of the data frame is an observation, where the columns represent variables that
take on different values across observations. However, depending on the design of the experiment (especially
repeated-measures designs), the data may be initially organized in the wide format, where each row is a
participant, and the columns represent scores among the different experimental conditions. Consider the
following data set organized in wide format:
bpdrug.data<-read.table(file="bpdrug.txt",header=T)
head(bpdrug.data)

Subj mg100 mg150 mg200
1 1 122.8915 130.2325 120.8630
2 2 129.1299 128.1279 116.6290
3 3 124.9678 124.0082 120.6927
4 4 129.3927 126.4388 118.4236
5 5 125.1873 123.4438 119.4742
6 6 133.3509 121.5304 111.1048

This data set contains the systolic blood pressure readings of 20 different participants who received each of
three doses of a new blood pressure drug (100mg, 150mg, 200mg). The data are in wide format, with each
dose level getting its own column and each row representing the observed BP reading for that participant.
However, in order to utilize the majority of functions in R, the data need to be converted to long format.
Fortunately, the tidyr package which comes with tidyverse contains the gather and spread functions which

9

transform the data from wide to long, and from long to wide formats, respectively. Let’s use the gather
function to convert the data into long format:
bpdata.long<-gather(bpdrug.data,key="Dose",value="SysBP",mg100:mg200)
head(bpdata.long)

Subj Dose SysBP
1 1 mg100 122.8915
2 2 mg100 129.1299
3 3 mg100 124.9678
4 4 mg100 129.3927
5 5 mg100 125.1873
6 6 mg100 133.3509

Now that the data are in long format, we can use the built-in functions within R to calculate descriptive
statistics using the group_by and summarize functions that we used above.
by_dose<-group_by(bpdata.long,Dose)
dose.means<-summarize(by_dose,meanBP=mean(SysBP),sdBP=sd(SysBP),nSubj=length(SysBP))
print(dose.means)

A tibble: 3 x 4
Dose meanBP sdBP nSubj
<chr> <dbl> <dbl> <int>
1 mg100 128.2321 3.889886 20
2 mg150 126.8867 3.322595 20
3 mg200 117.9121 5.355847 20

10

	Get and Set Working Directory
	Basic Arithmetic
	Rounding In R
	Loading Data Into R
	Data Formatting with Tidyverse
	Get Descriptive Statistics
	Plot/Visualize the Data
	Boxplot
	Bar Graph
	Histogram

	Going From the Raw Data to Descriptive Statistics
	Long Vs. Wide Format

