
PSYC 6780: Lab Tutorial 2
Chris M. Fiacconi

Indexing with Logical Statements

In the previous tutorial, we selected elements of a vector based on their index or position within the vector.
It is also helpful to be able to select out certain elements of a vector that meet a given criterion. We can do
this by using logical statements within the [] bracket notation.

my_numbers<-c(3,7,1,2,9,3,4)
my_numbers2<-c(1,4,5,2,4,1,5)

# Get numbers > 3
greater_3<-my_numbers[my_numbers > 3]
print(greater_3)

## [1] 7 9 4

# Get numbers != 3
not_equal_3<-my_numbers[my_numbers != 3]
print(not_equal_3)

## [1] 7 1 2 9 4

# Combine logical statement with function
mean(my_numbers2)

## [1] 3.142857

mean_subset<-my_numbers[my_numbers > mean(my_numbers2)]
print(mean_subset)

## [1] 7 9 4

# Create data.frame and index rows with logical statement
my_numbers_data<-data.frame(set_1=my_numbers,set_2=my_numbers2)
rows_mean_subset<-my_numbers_data[my_numbers_data[,1] > mean(my_numbers_data[,2]),]
print(rows_mean_subset)

## set_1 set_2
## 2 7 4
## 5 9 4
## 7 4 5
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Data Wrangling and Summarizing with Tidyverse

Although the basic version of R contains many useful functions, there are external packages developed by
users that are designed to make data wrangling and organization much simpler than the basic commands
that are built-in to R. One such package is tidyverse which actually contains multiple sub-packages all
designed to facilitate managing and summarizing your data.

Let’s install and load tidyverse:

install.packages("tidyverse") # make sure you are connected to the internet - only do this once!
library(tidyverse) # load the package into the R environment - do this each time you open R!

## Warning: package 'ggplot2' was built under R version 3.5.2

We’ll learn to use the following functions from tidyverse to wrangle and summarize our data:

filter() # select particular rows
group_by() # chunk data together for easy summarizing
summarize() # summarize grouped data
arrange() # sort data
select() # choose a specific variable (column) by name
mutate() # add a column to existing data frame

Let’s now load the .txt file from Week 1 into R. Remember, the header argument indicates whether our data
file has column names. In this case (and almost always in this course), the answer is yes, so we set it to “T”
for TRUE. This data file lists the height of 40 students from UG and 40 students from Waterloo.

mydata<-read.table(file="heights.txt",header=T) # load in data file and give it a name

Now, lets separate the height values according to School, and put them into two separate variables using the
filter function from the dplyr package that is part of the tidyverse.

Guelph<-filter(mydata,School=="Guelph") # separate the values in
# the height column that come from Guelph students and store them in a new variable
# called Guelph

head(Guelph,n=5)

## Subject School Height
## 1 1 Guelph 171.1582
## 2 2 Guelph 143.4576
## 3 3 Guelph 170.3947
## 4 4 Guelph 187.2626
## 5 5 Guelph 174.8415

Waterloo<-filter(mydata,School=="Waterloo") # separate the values in
# the height column that come from Waterloo students and store them in a new variable
# called Waterloo

head(Waterloo,n=5)
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## Subject School Height
## 1 41 Waterloo 189.7056
## 2 42 Waterloo 184.6231
## 3 43 Waterloo 186.8270
## 4 44 Waterloo 162.7278
## 5 45 Waterloo 175.6068

One of my favourite commands within the dplyr package is the group_by command. This function allows
you to group your data by condition so that subsequent commands can perform functions on each group. This
is extremely useful when you want to summarize your data according to different experimental conditions.
Let’s use this function to group the data within the mydata dataframe according to the School variable.

by_school<-group_by(mydata,School) # the new variable "by_school" is now grouped according to school

# Same thing using the 'pipe' (%>%)
by_school<-mydata %>% group_by(School)

# Notice that the data frame always goes first here - the %>% symbol is a way to chain together different
# functions on the same data set. You can think of it as meaning, 'and then.'

Get Descriptive Statistics

Now that we grouped the data by School, we can summarize and get descriptive statistics for each condition
using the summarize function, and specifying which summary statistics we want.

options(pillar.sigfig = 6) # Control the number of significant figures output - need this only once!

school.descriptives<-mydata %>% group_by(School) %>%
summarize(Mean=mean(Height),S.Dev=sd(Height),n=n())

print(school.descriptives)

## # A tibble: 2 x 4
## School Mean S.Dev n
## <fct> <dbl> <dbl> <int>
## 1 Guelph 182.332 14.0735 40
## 2 Waterloo 185.301 16.0061 40

Going From the Raw Data to Descriptive Statistics

Most experiments in psychology require that you collect multiple observations from multiple different research
participants. Therefore, your raw data will consist of values at the level of individual trials (each observation
per participant). Before we can calculate the condition-level descriptive statistics (as we did above), we
need to aggregate the data across trials for each participant. Fortunately, this task is made simple using the
commands within the tidyverse packages. First, let’s load in a representative data set.

raw_data<-read.table(file="EmoStroop.txt",header=T)
str(raw_data)

## 'data.frame': 5377 obs. of 4 variables:
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## $ Conditions : Factor w/ 2 levels "Congruent","Incongruent": 1 1 1 1 1 1 1 1 1 1 ...
## $ TargValence: Factor w/ 2 levels "Negative","Positive": 2 2 2 2 2 2 2 2 2 2 ...
## $ RT : int 1445 1277 1098 1256 775 1326 940 1056 746 1212 ...
## $ Subj : int 1 1 1 1 1 1 1 1 1 1 ...

This dataset comes from an experiment that examined whether response conflict is perceived as emotionally
‘negative’. On each trial, participants (n = 30) were primed with either a congruent or incongruent Stroop
item (e.g., the word “blue” printed in green) followed by either a positive (e.g., “adore”), or negative (e.g.,
“murder”) word. Thus, there were a total of four conditions in the experiment, and there were 48 trials in
each condition. Reaction time (RT) classify the word as positive or negative was the dependent measure of
interest.

Each row represents a trial, with the columns representing variables indicating the condition, the RT, and
which participant was associated with a given trial. First, we need to aggregate across trials within each
condition for each participant, deriving a summary statistic that captures the central tendency of the obser-
vations for that condition for that participant. Let’s use the group_by function followed by the summarize
function contained within the dplyr package to obtain these values:

subj.medians<-raw_data %>% group_by(Subj,Conditions,TargValence) %>%
summarize(medianRT=median(RT),nTrials=n()) # Get median and no. trials for each condition

# for each participant.
# the n() function will tell us how many elements are in each chunk

print(subj.medians)

## # A tibble: 120 x 5
## # Groups: Subj, Conditions [?]
## Subj Conditions TargValence medianRT nTrials
## <int> <fct> <fct> <dbl> <int>
## 1 1 Congruent Negative 914 47
## 2 1 Congruent Positive 801 46
## 3 1 Incongruent Negative 899 44
## 4 1 Incongruent Positive 822.5 44
## 5 2 Congruent Negative 559.5 44
## 6 2 Congruent Positive 551 43
## 7 2 Incongruent Negative 548 45
## 8 2 Incongruent Positive 528 41
## 9 3 Congruent Negative 505 46
## 10 3 Congruent Positive 528 45
## # ... with 110 more rows

The preceding code calculated the median RT for each participant for each of the four conditions, along
with the number of trials within each condition for each participant (exclusion of outliers and incorrect trials
resulted in <=48 trials per condition)

Now that we have the median RTs, let’s aggregate across participants to derive the mean RT for each
condition:

by_cond_means<-subj.medians %>% group_by(Conditions,TargValence,add=FALSE) %>%
summarize(meanRT=mean(medianRT),nSubj=n()) # make sure to set add=FALSE!!

print(by_cond_means)
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## # A tibble: 4 x 4
## # Groups: Conditions [?]
## Conditions TargValence meanRT nSubj
## <fct> <fct> <dbl> <int>
## 1 Congruent Negative 686.017 30
## 2 Congruent Positive 650.017 30
## 3 Incongruent Negative 676.95 30
## 4 Incongruent Positive 655.683 30

Consistent with the idea that response conflict is inherently aversive, it appears as though negative words
are responded to faster following an incongruent Stroop prime, with the opposite pattern holding for the
positive words.

Long Vs. Wide Format - Reformatting Data

One-Way Repeated-Measures Design

Another key aspect of data organization in R concerns the distinction between the wide and long data
formats. To this point, the data have been organized in long format, which is the format that R prefers. In
the long format, each row of the data frame is an observation, where the columns represent variables that
take on different values across observations. However, depending on the design of the experiment (especially
repeated-measures designs), the data may be initially organized in the wide format, where each row is a
participant, and the columns represent scores among the different experimental conditions. Consider the
following data set organized in wide format:

bpdrug.data<-read.table(file="bpdrug.txt",header=T)
head(bpdrug.data)

## Subj mg100 mg150 mg200
## 1 1 122.8915 130.2325 120.8630
## 2 2 129.1299 128.1279 116.6290
## 3 3 124.9678 124.0082 120.6927
## 4 4 129.3927 126.4388 118.4236
## 5 5 125.1873 123.4438 119.4742
## 6 6 133.3509 121.5304 111.1048

This data set contains the systolic blood pressure readings of 20 different participants who received each of
three doses of a new blood pressure drug (100mg, 150mg, 200mg). The data are in wide format, with each
dose level getting its own column and each row representing the observed BP reading for that participant.
However, in order to utilize the majority of functions in R, the data need to be converted to long format.
Fortunately, the tidyr package which comes with tidyverse contains the gather and spread functions which
transform the data from wide to long, and from long to wide formats, respectively. Let’s use the gather
function to convert the data into long format:

bpdata_long<-gather(bpdrug.data,key="Dose",value="SysBP",mg100:mg200)
str(bpdata_long) # See structure of data frame

## 'data.frame': 60 obs. of 3 variables:
## $ Subj : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Dose : chr "mg100" "mg100" "mg100" "mg100" ...
## $ SysBP: num 123 129 125 129 125 ...
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head(bpdata_long) # Look at first 6 rows of new data frame

## Subj Dose SysBP
## 1 1 mg100 122.8915
## 2 2 mg100 129.1299
## 3 3 mg100 124.9678
## 4 4 mg100 129.3927
## 5 5 mg100 125.1873
## 6 6 mg100 133.3509

Now that the data are in long format, we can use the built-in functions within R to calculate descriptive
statistics using the group_by and summarize functions that we used above.

by_dose_means<-bpdata_long %>% group_by(Dose) %>%
summarize(meanBP=mean(SysBP),sdBP=sd(SysBP),nSubj=n())

print(by_dose_means)

## # A tibble: 3 x 4
## Dose meanBP sdBP nSubj
## <chr> <dbl> <dbl> <int>
## 1 mg100 128.232 3.88989 20
## 2 mg150 126.887 3.32259 20
## 3 mg200 117.912 5.35585 20

Two-Way Repeated-Measures Design

The previous example was fairly simple, as the experiment consisted of a one-way design. Let’s look at how
to transform data from wide to long with a more complex 2 × 2 design.

angle_data<-read.table(file="Ch12T1.txt",header=T) # Load data file
head(angle_data)

## Absent0 Absent4 Absent8 Present0 Present4 Present8
## 1 420 420 480 480 600 780
## 2 420 480 480 360 480 600
## 3 480 480 540 660 780 780
## 4 420 540 540 480 780 900
## 5 540 660 540 480 660 720
## 6 360 420 360 360 480 540

Now we will convert the data from wide format to long format using the gather function together with the
separate function.

angle_data$Subject<-as.factor(1:nrow(angle_data)) # add Subject ID column to angle.data
angle_long<-gather(data=angle_data,key=Noise.Angle,value=RT,-Subject) # Gather columns except Subject
head(angle_long)

## Subject Noise.Angle RT
## 1 1 Absent0 420
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## 2 2 Absent0 420
## 3 3 Absent0 480
## 4 4 Absent0 420
## 5 5 Absent0 540
## 6 6 Absent0 360

# Break up Noise.Angle column into 2 separate columns
angle_long<-separate(angle_long,col=Noise.Angle,into=c("Noise","Angle"),sep=-1)

angle_long$Noise<-as.factor(angle_long$Noise) # Ensure Noise is treated as a factor!!
angle_long$Angle<-as.factor(angle_long$Angle) # Ensure Angle is treated as a factor!!

head(angle_long,n=12)

## Subject Noise Angle RT
## 1 1 Absent 0 420
## 2 2 Absent 0 420
## 3 3 Absent 0 480
## 4 4 Absent 0 420
## 5 5 Absent 0 540
## 6 6 Absent 0 360
## 7 7 Absent 0 480
## 8 8 Absent 0 480
## 9 9 Absent 0 540
## 10 10 Absent 0 480
## 11 1 Absent 4 420
## 12 2 Absent 4 480

# Convert back from long to wide format with unite and spread functions
angle_long_unite<-unite(angle_long,col="Noise_Angle",Noise,Angle)
angle_data_wide<-spread(angle_long_unite,key=Noise_Angle,value=RT)

print(angle_data_wide)

## Subject Absent_0 Absent_4 Absent_8 Present_0 Present_4 Present_8
## 1 1 420 420 480 480 600 780
## 2 2 420 480 480 360 480 600
## 3 3 480 480 540 660 780 780
## 4 4 420 540 540 480 780 900
## 5 5 540 660 540 480 660 720
## 6 6 360 420 360 360 480 540
## 7 7 480 480 600 540 720 840
## 8 8 480 600 660 540 720 900
## 9 9 540 600 540 480 720 780
## 10 10 480 420 540 540 660 780

More Tools For Structuring and Re-organizing your data

Now, let’s see how we can use the arrange, select, and mutate commands with the bpdata data set to help
organize and add additional structure to the data set.
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by_subj_num<-bpdata_long %>% arrange(Subj) # Order dataframe by Subj (increasing)
by_subj_num_desc<-bpdata_long %>% arrange(desc(Subj)) # Order dataframe by Subj (decreasing)
head(by_subj_num)

## Subj Dose SysBP
## 1 1 mg100 122.8915
## 2 1 mg150 130.2325
## 3 1 mg200 120.8630
## 4 2 mg100 129.1299
## 5 2 mg150 128.1279
## 6 2 mg200 116.6290

# We can also sort by more than one variable
by_subj_sys<-bpdata_long %>% arrange(Subj,SysBP)
head(by_subj_sys)

## Subj Dose SysBP
## 1 1 mg200 120.8630
## 2 1 mg100 122.8915
## 3 1 mg150 130.2325
## 4 2 mg200 116.6290
## 5 2 mg150 128.1279
## 6 2 mg100 129.1299

# To isolate one column, we can use the select() function
dose<-bpdata_long %>% select(Dose)
head(dose)

## Dose
## 1 mg100
## 2 mg100
## 3 mg100
## 4 mg100
## 5 mg100
## 6 mg100

# If you want the values/labels only without the title use pull()
dose_values<-bpdata_long %>% pull(Dose)
head(dose_values)

## [1] "mg100" "mg100" "mg100" "mg100" "mg100" "mg100"

# We can add a new column to our dataframe using the mutate() function
gender<-rep(c("Male","Female"),times=10,each=3) # Create gender variable

bpdata_long_gender<-by_subj_num %>% mutate(Gender=gender) # Append gender variable
head(bpdata_long_gender)

## Subj Dose SysBP Gender
## 1 1 mg100 122.8915 Male
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## 2 1 mg150 130.2325 Male
## 3 1 mg200 120.8630 Male
## 4 2 mg100 129.1299 Female
## 5 2 mg150 128.1279 Female
## 6 2 mg200 116.6290 Female

Loading Multiple Data Files and Combining Them

So far, the raw data files we’ve loaded into R (e.g., EmoStroop.txt) have contained the data from all subjects.
However, you will often collect one data file at a time, and it is very helpful to load all of these data files
at the same time and combine them into a single data file for easy analysis in R. Let’s learn how to do this
with a series of .txt files.

# Set wd to folder where data files are located
setwd("/Users/chrisfiacconi/Dropbox/Teaching/PSYC 6780/Lab Tutorial 2/Subject Data Files")

file_names<-dir(pattern = ".txt") # Get names of all files that match the .txt extension

# apply the read.table function to each file
files<-lapply(file_names,read.table,sep = "\t", fill = TRUE,header = TRUE)

files_combined<-do.call(rbind,files) # Combine all files into a single data frame

# Now let's analyze the data
str(files_combined)

## 'data.frame': 22 obs. of 3 variables:
## $ Subject : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Condition: Factor w/ 3 levels "c1","c2","Practice": 3 3 1 2 1 2 1 2 1 2 ...
## $ RT : int 500 550 450 560 480 620 550 430 600 590 ...

files_combined$Subject<-as.factor(files_combined$Subject) # Convert Subject column to factor

exp_trials<-files_combined %>% filter(Condition != "Practice") # Get rid of practice trials

by_subj_descriptives<-exp_trials %>% group_by(Subject,Condition) %>%
summarize(MeanRT=mean(RT),S.Dev=sd(RT),n=n()) # Get means/SD/num_trials for each subject

print(by_subj_descriptives)

## # A tibble: 4 x 5
## # Groups: Subject [?]
## Subject Condition MeanRT S.Dev n
## <fct> <fct> <dbl> <dbl> <int>
## 1 1 c1 540 73.8241 5
## 2 1 c2 550 83.6660 4
## 3 2 c1 590 73.4847 5
## 4 2 c2 547.5 107.819 4

overall_means<-by_subj_descriptives %>% group_by(Condition, add=FALSE) %>%
summarize(meanRT=mean(MeanRT)) # Get overall means for each condition

print(overall_means)
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## # A tibble: 2 x 2
## Condition meanRT
## <fct> <dbl>
## 1 c1 565
## 2 c2 548.75

Dealing with Missing Data

Unfortunately, data does not always come in a neat package. For various reasons, it is not uncommon to have
missing values in your data due to factors such as attrition, errors, etc. Fortunately, R has a number of tools
that make sorting and re-organizing data with missing values fairly straightforward. Typically (although not
always), these missing values are represented by an NA value.

# Create data with missing values

stocks<-tibble(
year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
qtr = c(1,2,3,4,2,3,4),
return = c(1.88,0.59,0.35,NA,0.92,0.17,2.66)

)

head(stocks)

## # A tibble: 6 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 2 0.92
## 6 2016 3 0.17

# Identify NAs
is.na(stocks$return)

## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

which(is.na(stocks$return) == TRUE)

## [1] 4

Notice that there are actually two missing values here - one explicit (NA) and one implicit (2016, qtr #1).
A very useful function that allows you to identify all missing values (implicit and explicit) is the complete
function. This function will identify all unique combinations of row values within the columns you specify
so that you can see any missing values that may be present.

stocks_complete<-stocks %>%
complete(year, qtr)

print(stocks_complete)
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## # A tibble: 8 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 1 NA
## 6 2016 2 0.92
## 7 2016 3 0.17
## 8 2016 4 2.66

# If you try to use a function when NAs are present, you'll get NA as output
mean(stocks$return)

## [1] NA

# You can avoid this by telling mean to ignore NAs
mean(stocks$return,na.rm=TRUE)

## [1] 1.095

# Get rid of rows with NA values
stocks_clean<-stocks_complete %>% filter(!is.na(return))

print(stocks_clean)

## # A tibble: 6 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2016 2 0.92
## 5 2016 3 0.17
## 6 2016 4 2.66

Dealing with Outliers

Outliers can have a dramatic influence on your data, especially if you are primarily interested in mean levels
of performance. There are many different approaches to dealing with outliers, but here we will focus on how
to identify and remove outliers from a dataset containing reaction times (RTs).

Absolute Cut-offs

# Basic approach - remove RTs < 200 ms and > 5000 ms
rts<-as.integer(rnorm(n=30,mean=500,sd=90)) # Create data without outliers
rts_with_noise<-c(rts,150,5390) # add in outliers
rts_with_noise<-data.frame(Subject=seq(1,32,1),RT=rts_with_noise)
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# Two equivalent methods
clean_rts<-filter(rts_with_noise,RT > 200 & RT < 5000)
clean_rts<-filter(rts_with_noise,RT > 200,RT < 5000) # Same as above
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Relative Cut-offs

Although this is a reasonable strategy, it is often not desirable to use absolute RT cutoffs only. Often, we
may want to exclude RTs that are some number of standard deviations above or below the mean. Let’s learn
how to do this.

12



sd_cutoff<-2.5 # Set SD criterion for cutoff

sd_clean_rts<-rts_with_noise %>%
filter(RT > (mean(RT)-sd(RT)*sd_cutoff), RT < (mean(RT)+sd(RT)*sd_cutoff))

This method is easy to implement and works well. However, often we want to exclude outliers in a given
condition based on the mean and SD of RTs within each cell of our experimental design. To accomplish this,
we need to chunk the data and group it by condition before applying the filtering procedure. Let’s use the
data from the EmoStroop data set.

str(raw_data) # Look at structure of EmoStroop data

## 'data.frame': 5377 obs. of 4 variables:
## $ Conditions : Factor w/ 2 levels "Congruent","Incongruent": 1 1 1 1 1 1 1 1 1 1 ...
## $ TargValence: Factor w/ 2 levels "Negative","Positive": 2 2 2 2 2 2 2 2 2 2 ...
## $ RT : int 1445 1277 1098 1256 775 1326 940 1056 746 1212 ...
## $ Subj : int 1 1 1 1 1 1 1 1 1 1 ...

Recall, these data come from a 2 × 2 factorial design with Condition (Congruent, Incongruent) and TargVa-
lence (Negative, Positive) as independent variables.

sd_cutoff<-2 # Use 2 SD as criterion

raw_ntrials<-raw_data %>%
group_by(Subj,Conditions,TargValence) %>%
summarize(nTrials=n()) # Get n trials per cell

print(raw_ntrials)

## # A tibble: 120 x 4
## # Groups: Subj, Conditions [?]
## Subj Conditions TargValence nTrials
## <int> <fct> <fct> <int>
## 1 1 Congruent Negative 47
## 2 1 Congruent Positive 46
## 3 1 Incongruent Negative 44
## 4 1 Incongruent Positive 44
## 5 2 Congruent Negative 44
## 6 2 Congruent Positive 43
## 7 2 Incongruent Negative 45
## 8 2 Incongruent Positive 41
## 9 3 Congruent Negative 46
## 10 3 Congruent Positive 45
## # ... with 110 more rows

emo_clean_rts<-raw_data %>%
group_by(Subj,Conditions, TargValence) %>%
filter(RT > (mean(RT)-sd(RT)*sd_cutoff), RT < (mean(RT)+sd(RT)*sd_cutoff)) # Remove outliers

clean_ntrials<-emo_clean_rts %>%
group_by(Subj,Conditions,TargValence) %>%
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summarize(nTrials=n()) # Look at n trials per cell after removing outliers

print(clean_ntrials)

## # A tibble: 120 x 4
## # Groups: Subj, Conditions [?]
## Subj Conditions TargValence nTrials
## <int> <fct> <fct> <int>
## 1 1 Congruent Negative 44
## 2 1 Congruent Positive 45
## 3 1 Incongruent Negative 41
## 4 1 Incongruent Positive 43
## 5 2 Congruent Negative 42
## 6 2 Congruent Positive 41
## 7 2 Incongruent Negative 44
## 8 2 Incongruent Positive 39
## 9 3 Congruent Negative 45
## 10 3 Congruent Positive 41
## # ... with 110 more rows

num_rawtrials<-sum(raw_ntrials$nTrials) # Get total number of raw trials
num_cleantrials<-sum(clean_ntrials$nTrials)# Get total number of remaining clean trials

prop_removed<-(num_rawtrials-num_cleantrials)/num_rawtrials # Calculate proportion of trials removed
print(prop_removed)

## [1] 0.0524456

Non-Recursive Moving Criteria

Although choosing a fixed SD criterion is a common approach, an even better approach is to choose a variable
SD criterion that is based on the number of trials in each cell of the design. Although many experiments
have equal numbers of trials in each condition, the number can often be unequal due to exclusion of error
trials and for experiments in which there is a manipulation of the proportion of trials across conditions.

This approach was introduced by VanSelst & Joliceour (1994), who came up with a series of SD criteria
that vary based on cell size. Essentially, they created a look-up table that indicates which SD criteria to use
given the cell size in a given condition. Let’s first load in the lookup table:

SD_criteria<-read.table("joliceour_outlier.txt",header=TRUE)
head(SD_criteria,n=10)

## celln criterion
## 1 1 1.458
## 2 2 1.458
## 3 3 1.458
## 4 4 1.458
## 5 5 1.680
## 6 6 1.841
## 7 7 1.961
## 8 8 2.050
## 9 9 2.120
## 10 10 2.173
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Now let’s try and implement this procedure using the tidyverse tools we’ve covered to date. We’ll work with
the PrimingRTs.txt data file.

priming_data<-read.table(file="PrimingRTs.txt",header=TRUE)
str(priming_data)

## 'data.frame': 1837 obs. of 4 variables:
## $ Subject : int 73 73 73 73 73 73 73 73 73 73 ...
## $ Word : Factor w/ 180 levels "adopts","ammo",..: 31 73 36 104 157 20 140 74 76 30 ...
## $ WordType : Factor w/ 2 levels "Primed","Unprimed": 2 1 2 1 1 2 2 1 1 2 ...
## $ JOLWord.RT: int 2082 2875 3308 3361 1569 12117 793 2672 2232 3032 ...

# How many subjects?
n_sub<-length(unique(priming_data$Subject))
print(n_sub)

## [1] 36

# Get n trials for each condition for each subject and raw means per conditions
priming_data %>%

group_by(Subject,WordType) %>%
summarize(nTrials=n(),meanRT=mean(JOLWord.RT))

## # A tibble: 72 x 4
## # Groups: Subject [?]
## Subject WordType nTrials meanRT
## <int> <fct> <int> <dbl>
## 1 73 Primed 25 2415.72
## 2 73 Unprimed 26 3279.54
## 3 74 Primed 27 2217.78
## 4 74 Unprimed 28 1556.93
## 5 75 Primed 28 2134.93
## 6 75 Unprimed 27 2704.07
## 7 76 Primed 30 1817.2
## 8 76 Unprimed 28 2091.29
## 9 77 Primed 29 1711.79
## 10 77 Unprimed 26 1292.08
## # ... with 62 more rows

# Get rid of outliers using VanSelst & Joliceour (1994) procedure
clean_priming_rts<-priming_data %>%

group_by(Subject,WordType) %>%
filter(JOLWord.RT > (mean(JOLWord.RT)-sd(JOLWord.RT)*SD_criteria$criterion[n()])) %>%
filter(JOLWord.RT < (mean(JOLWord.RT)+sd(JOLWord.RT)*SD_criteria$criterion[n()]))

num_raw_priming_trials<-dim(priming_data)[1]
num_clean_priming_trials<-dim(clean_priming_rts)[1]

prop_removed<-(num_raw_priming_trials-num_clean_priming_trials)/(num_raw_priming_trials)
print(prop_removed)

## [1] 0.03538378
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# Get n trials for each condition for each subject and cleaned means per conditions
clean_priming_rts %>%

group_by(Subject,WordType) %>%
summarize(nTrials=n(),meanRT=mean(JOLWord.RT))

## # A tibble: 72 x 4
## # Groups: Subject [?]
## Subject WordType nTrials meanRT
## <int> <fct> <int> <dbl>
## 1 73 Primed 24 2124.5
## 2 73 Unprimed 25 2926.04
## 3 74 Primed 26 2002.19
## 4 74 Unprimed 27 1466.11
## 5 75 Primed 27 2044.22
## 6 75 Unprimed 26 2437.38
## 7 76 Primed 29 1715
## 8 76 Unprimed 28 2091.29
## 9 77 Primed 28 1627.93
## 10 77 Unprimed 25 1190.44
## # ... with 62 more rows

Binning Data

Another useful technique is to analyze the data in bins - that is, broken down into pieces (usually quartiles).
When examining RTs for two conditions, it can be informative to see whether the difference between con-
ditions is consistent across the entire distribution of RTs (i.e., the distribution is shifted), or whether any
differences are confined to the tails of the distribution.

Let’s divide the RT data into quartiles and plot the mean RT for each quartile. This can easily be achieved
using the cut_number function which divides the data into n bins of equal size.

nBins<-4

# Create and add column for quartile bins
RT_data_quart<-clean_priming_rts %>%

group_by(Subject,WordType) %>%
mutate(bin=cut_number(JOLWord.RT,n=nBins))

head(RT_data_quart)

## # A tibble: 6 x 5
## # Groups: Subject, WordType [2]
## Subject Word WordType JOLWord.RT bin
## <int> <fct> <fct> <int> <chr>
## 1 73 clever Unprimed 2082 (1.13e+03,2.23e+03]
## 2 73 hand Primed 2875 (2.7e+03,5.4e+03]
## 3 73 cruel Unprimed 3308 (2.23e+03,4.39e+03]
## 4 73 nymphs Primed 3361 (2.7e+03,5.4e+03]
## 5 73 tasty Primed 1569 (1.33e+03,1.67e+03]
## 6 73 river Unprimed 793 [708,1.13e+03]
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# Get subject-level means for each bin and create binNum column
meanRT_quartiles<-RT_data_quart %>%

group_by(Subject,WordType,bin,add=FALSE) %>%
summarize(meanRT=mean(JOLWord.RT),nObs=n()) %>%
arrange(Subject,WordType,meanRT) %>%
mutate(binNum=rep(seq(1,4,1)))

meanRT_quartiles$binNum<-as.factor(meanRT_quartiles$binNum) # Convert binNum to factor for plotting

# Get overall mean RT for each bin
overall_meanRT_byquart<-meanRT_quartiles %>%

group_by(WordType,binNum,add=FALSE) %>%
summarize(meanBinRT=mean(meanRT))

print(overall_meanRT_byquart)

## # A tibble: 8 x 3
## # Groups: WordType [?]
## WordType binNum meanBinRT
## <fct> <fct> <dbl>
## 1 Primed 1 917.774
## 2 Primed 2 1335.56
## 3 Primed 3 1918.06
## 4 Primed 4 3275.86
## 5 Unprimed 1 956.843
## 6 Unprimed 2 1483.00
## 7 Unprimed 3 2252.69
## 8 Unprimed 4 4234.87
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