
Lab Tutorial 3: General Linear Model and ANOVA

The General Linear Model

Most statistical tests (including t- and F - tests) can be understood as variations and extensions of the General
Linear Model. It is important to understand the concept of model fitting in which an observed set of data
can be conceptualized as resulting from the linear combination of a set of predictor variables. You can think
of modelling as building a template of what you would expect the data to look like, and then assessing the
degree to which the observed data fit this template. The general form of the General Linear Model is:

Yi = β0X0i
+ β1X1i

+ β2X2i
+ ...+ βkXki

+ εi

where Yi is the observed score for individual i, Xki is a predictor variable for individual i in the kth condition,
β0 is the model intercept, βki

is the model coefficient that indicates how much change in Y is expected from
being in condition k, and εi is the deviation of the observed score from the predicted score. This model
is considered linear because the outcome variable Yi is predicted from the sum of independent predictor
variables and the “error” associated with the predicted score. The β components of the model are known as
the model parameters and are estimated from the observed data.

Significance Testing: Assessing The Relative Fit of Models

You can think of NHST significance testing as assessing the degree to which the addition of a model
parameter(s) yields a significantly greater fit to the data than a model without this parameter(s). In other
words, we are interested in comparing the relative fit of two different models - a restricted model which does
not contain the parameter(s) of interest, and a full model which is identical to the restricted model, except for
the addition of the parameter(s) of interest. The primary question is then: does the full model provide a
significant improvement in fit relative to the restricted model? This can be assessed by examining
the reduction in prediction error associated with the full model relative to the restricted model. The following
example will illustrate this concept.

In a between-subject design with three levels (k = 3) of an independent variable, we can construct the
following restricted and full models:

Restricted Model:
Yij = µ+ εij

Full Model:
Yij = µ+ αj + εij

where µ is the model intercept (grand mean of all observations), and αj is the difference between the mean of
condition Ȳj and the grand mean (µ). This method of constructing the models is known as effects coding
where the αj parameters being estimated from the data represent how far each condition mean (Ȳj) deviates
from the grand mean (µ).

αj = Ȳj − µ

The sum of αj ’s are constrained to zero:
k∑

j=1
αj = 0

Once we have specified our restricted and full models, we can test to see whether the full model significantly
reduces prediction error relative to the restricted model. This is tantamount to testing the null hypothesis
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(H0) that α1 = α2 = α3 = 0, or equivalently that µ1 = µ2 = µ3. The alternative hypothesis (Ha) is that at
least one αj 6= 0, or equivalently that at least one population mean (µ) is different than the others.

Now we need to quantify the relative goodness-of-fit of the models. To do this we can calculate a test statistic,
F that captures the difference in fit between the restricted and full models:

F = (ER − EF )/(dfR − dfF )
EF /dfF

where EF and ER are the sum of squared residuals (or prediction error) associated with the full and restricted
models respectively, and dfF and dfR are the degrees of freedom associated with the full and restricted models,
respectively. It can be shown that:

(dfR − dfF ) = k − 1

dfF = N − k

Under the null hypothesis (H0), the F -statistic follows a characteristic distribution defined by the degrees of
freedom in the numerator and the denominator. When all αj = 0, large values of F should be relatively rare.
If our F -statistic is sufficiently large such that it would only occur when H0 is true <5% of the time, then we
reject H0.
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Figure 1: F-distribution with df1=3, df2=27. Dotted line represents 95th percentile, such that 95% of
F-values lie to the left of this line.

Below is a graphical depiction of what EF and ER represent. First, let’s consider the restricted model:

In this experiment with k = 3 levels, and nj = 5, the restricted model aims to predict each individual’s score
using only the grand mean (µ; dotted red line). The residuals (ER), are calculated by summing the squared
difference between each individual’s score, Yij , and the grand mean, µ, and represent the prediction error
associated with the restricted model (see Figure 2).

Now consider the predictions from the full model (see Figure 3):
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Figure 2: Predictions of individuals scores from the restricted model. The black dotted lines represent the
residuals, which quantify the amount of prediction error associated with this model.

Inclusion of the αj parameters in the full model allows our predictions to be more specific - that is, we can
now use information about group membership to predict an individual’s score. For individual i in group j,
we predict that their score will be the sum of the grand mean (µ) plus the effect of being in group j (αj).
The remaining difference represents prediction error (residuals; εij). The key is whether this prediction error
is smaller in the full model (EF ) than in the restricted model (ER), which we can formally assess using an
F -test. Let’s learn how to do this in R.

Analysis of Variance As Comparison of Nested Models

Example #1

In R we can build the restricted and full models using the lm command. Let’s read in a .txt file containing
data to illustrate how to use this command. In this example, there are k = 3 levels of one independent
variable with 5 subjects in each of the 3 conditions.
options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!! Set sum-to-zero contrasts

my.data<-read.table(file="L3data1.txt",header=T)
my.data$Subj<-as.factor(my.data$Subj) # IMPORTANT!! Convert Subj variable to factor!!
str(my.data)

## 'data.frame': 15 obs. of 3 variables:
## $ Subj : Factor w/ 15 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Condition: Factor w/ 3 levels "A","B","C": 1 1 1 1 1 2 2 2 2 2 ...
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Figure 3: Predictions of individuals scores from the full model. The black dotted lines represent the residuals,
which quantify the amount of prediction error associated with this model.

## $ DV : num 48.5 43.8 48.7 53 37.7 ...
model.restricted<-lm(DV~1,data=my.data) # Create restricted model
model.full<-lm(DV~1+Condition,data=my.data) # Create full model

Note that the ~ symbol can be taken to mean, ‘as a function of’. In the case of the restricted model, we are
modelling the dependent variable DV as a function of the grand mean (intercept) only, which is represented
by a 1. In the full model, we are modelling DV as function of the grand mean (intercept) and Condition,
where the effect of being in Condition j is represented by αj .

We can formally compare the models with an F -test using the anova command:
my.aov<-anova(model.restricted,model.full)
print(my.aov)

## Analysis of Variance Table
##
## Model 1: DV ~ 1
## Model 2: DV ~ 1 + Condition
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 14 561.81
## 2 12 322.96 2 238.86 4.4376 0.03608 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table contains many components. First, note that F (2, 12) = 4.44 and that the associated
p-value is <.05. This means than we can reject the null hypothesis that α1 = α2 = α3 = 0, and that the
addition of these αj parameters in the full model significantly reduced the prediction error relative to the
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restricted model.

A quicker and easier way to do a one-way between-subjects ANOVA in R is to use the aov followed by the
summary command as illustrated below:
my.aov2<-aov(DV~Condition,data=my.data)
print(summary(my.aov2))

## Df Sum Sq Mean Sq F value Pr(>F)
## Condition 2 238.9 119.43 4.438 0.0361 *
## Residuals 12 323.0 26.91
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the values obtained are identical to those obtained using the lm and anova commands above. We
can also take a look at our model coefficients αj by using the coef command and inputting the my.aov2
object:
print(coef(my.aov2))

## (Intercept) Condition1 Condition2
## 51.708116 -5.373607 1.193841

The intercept term represents the grand mean (µ) of all scores in our dataset, wheareas the labels Condition1
and Condition2 represent α1 and α2, respectively. α3 is not shown, but can easily be calculated given that:

k∑
j=1

αj = 0

Therefore the remaining α coefficient can be calculated as follows:

α3 = −
k−1∑
j=1

αj = −1(−5.37 + 1.19) = 4.18

Most students who have learned about analysis of variance (ANOVA) in the past might not recognize the
approach to ANOVA described here. However, mathematically the two approaches are identical. Traditionally,
ANOVA is taught by calculating sums-of-squares (SS) and mean-square (MS) terms that capture the relevant
sources of variability in the data. This approach is directly related to the approach taken here. For instance
it can be shown that:

SSBetween = ER − EF

SSW ithin = EF

This makes sense given that our equation for the F -statistic is:

F = (ER − EF )/(dfR − dfF )
EF /dfF

= SSBetween/(dfR − dfF )
SSW ithin/dfF

= MSBetween

MSW ithin

Post-Hoc Tests

A one-way ANOVA is known as an omnibus test because it tests whether there exists at least one difference
between multiple condition means (Ȳj). Therefore, a statistically significant result with p <.05 only tells us
that at least one of the condition means differs from one of the other condition means, or equivalently, that at
least one αj 6= 0. Because there are three conditions, we need to perform additional tests to pinpoint which
condition means differ from each other. These tests are known as post-hoc tests because they are conducted
after the omnibus test.
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There are many different types of post-hoc tests, but the one mostly commonly used when all pairwise
comparisons of condition means are of interest is Tukey’s Honestly Significant Difference (HSD). Importantly,
this procedure controls for the inflation of the family-wise Type I error associated with multiple tests. We will
discuss this concept in more depth in future lessons. Implementing Tukey’s HSD in R is very straightforward
using the TukeyHSD command and inputting the my.aov2 object created with the aov command:
pairwise.posthoc<-TukeyHSD(my.aov2)
print(pairwise.posthoc)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = DV ~ Condition, data = my.data)
##
## $Condition
## diff lwr upr p adj
## B-A 6.567448 -2.1859157 15.32081 0.1541764
## C-A 9.553374 0.8000096 18.30674 0.0324591
## C-B 2.985925 -5.7674389 11.73929 0.6445035

Measures of Effect Size

Eta-Squared

Although a significant ANOVA suggests that there exists at least one difference among the condition means,
this analysis does not address the question: How large is the effect? In the case of a one-way ANOVA, one
appropriate measure of effect size is known as eta-squared, η2 (your MDK textbook refers to η2 as R2),
which represents the proportion of the total variability in the observed scores that can be attributed to our
between-subjects manipulation. It is calculated in the following manner:

η2 = SSBetween

SST otal

The value of SSBetween can be found in the ANOVA table in the output from the summary(aov) command,
and represents the variability in observed scores that is due to our experimental manipulation. The value of
SST otal is simply the sum of SSBetween and SSW ithin:
SS.between<-238.9 # Taken from ANOVA table above
SS.within<-323.0 # Taken from ANOVA table above
SS.total<-SS.between+SS.within

eta.sq<-SS.between/SS.total
print(round(eta.sq, digits=2))

## [1] 0.43

In other words, ~43% of the total variability in our dependent measure is attributable to the Condition
manipulation.

Cohen’s f

Another way to think of effect size is as a signal-to-noise ratio. In other words, we can express the standard
deviation among group means (σm) as a proportion of the pooled within-group standard deviation (σe). σm
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can be calculated directly from the values of αj :

σm =

√∑k
j=1 α

2
j

k

Likewise, σe is simply the within-group standard deviation pooled across groups (
√
MSW ). These values are

then used to calculate Cohen’s f, which is our signal-to-noise ratio, and is useful for power calculations, which
we will turn to later.

f = σm

σe

Alternatively, it is also possible to derive Cohen’s f directly from η2:

f =

√
η2

(1− η2)

According to Cohen, benchmarks for the f effect size measure define a “small” effect as f = .10, a “medium”
effect as f = .25, and a “large” effect as f = .40.

Power

Just as we did in the case of a two independent groups design (see Lab Tutorial 2), we can also use power
calculations to determine the required sample size (n) needed to detect an effect of size (f ) with a pre-specified
probability when our design includes three or more independent groups.

Now, let’s use the pwr.anova.test function in the pwr package to calculate how many subjects we would need
to detect an effect size of f = .15 (small) with a power = 0.80 in a study with three conditions manipulated
between-subjects. This function requires us to input the number of groups in our study (k), the desired level
of power, and the significance level we have chosen (0.05 by convention). The output will give us n, which is
the number of subjects per group.
library(pwr) # make sure the pwr package is installed first - install.packages("pwr")

pwr.anova.test(k=3,n=NULL,f=.15,sig.level=0.05,power=0.80)

##
## Balanced one-way analysis of variance power calculation
##
## k = 3
## n = 143.7394
## f = 0.15
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group

To detect an effect size of Cohen’s f = .15 with a power of 0.80, we would need 144 subjects in each of our
three groups!! Take home message: When you are trying to detect a small effect size, you probably need
more subjects than you think you do if you want to have a good chance of detecting it!

Underlying Assumptions of ANOVA

ANOVAs make a number of assumptions about the structure of the data. If these assumptions are not met,
it can threaten the validity of the ANOVA results. In this section I will describe some of the assumptions,
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and show you how to evaluate them in R.

1) Homogeneity of Variance

ANOVAs make the assumption that the variance of scores within each group are the same for all groups.
This stems in part from the fact that the within-group variability estimates in an ANOVA are pooled across
groups. Violations of this assumption can lead to erroneous results, particularly if the group n’s are small or
if there are unequal n’s in each group.

To test the null hypothesis that the variances for each group are equal, we can use the bartlett.test function.
bartlett.test(DV~Condition,data=my.data)

##
## Bartlett test of homogeneity of variances
##
## data: DV by Condition
## Bartlett's K-squared = 0.21834, df = 2, p-value = 0.8966

Our p-value = .89, so we do not reject the null hypothesis of equal variances. It appears that in our data, the
homogeneity of variance assumption is satisfied.

2) The Residuals Are Distributed Normally

ANOVAs also assume that the residuals from the fitted ANOVA model are normally distributed (bell-shaped).
To assess whether the residuals are indeed normally distributed, we can use the qqnorm function to generate
a plot of the residuals. In this plot, the residuals should all fall along the diagonal line. Noticeable departures
from the diagonal line are indicative of non-normality. To formally test the null hypothesis that the residuals
are distributed normally, you can use the shapiro.test function.
resid<-residuals(my.aov2)
qqnorm(resid,cex=1.5) # make q-q (quantile-quantile) plot of residuals
qqline(resid) # plot diagonal line
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shapiro.test(resid) # test whether residuals differ significantly from normality

##
## Shapiro-Wilk normality test
##
## data: resid
## W = 0.97151, p-value = 0.8797

The p-value is > 0.50, so we’re probably OK assuming that the residuals are distributed normally.

3) Scores are independent of one another

This assumption is typically satisfied by random assignment of subjects to condition.

Note: There are alternative tests that you can use if these assumptions are violated, but they are usually
less powerful. We won’t discuss them in this class, but you can find additional information on these tests in
your textbook.
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