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Planning a Research Study

Power and Sample Size

The planning stage of a research project is a crucial ingredient in determining the success of the project.
Such planning often involves consideration of statistical power - the probability of correctly rejecting the
null hypothesis. In other words, given that an effect exists, what is the probability that you will be able to
detect it given the design of your experiment? As you probably know, power is greatly influenced by sample
size (N ). Power calculations often involve determining the appropriate sample size to achieve a desired level
of power. To perform basic power calculations you can use the functions within the pwr package.

library(pwr) # first install.packages("pwr")
ls("package:pwr")

## [1] "cohen.ES" "ES.h" "ES.w1"
## [4] "ES.w2" "plot.power.htest" "pwr.2p.test"
## [7] "pwr.2p2n.test" "pwr.anova.test" "pwr.chisq.test"
## [10] "pwr.f2.test" "pwr.norm.test" "pwr.p.test"
## [13] "pwr.r.test" "pwr.t.test" "pwr.t2n.test"

# Example for paired design with Cohen's d = .2 - get N given power
pwr.t.test(n=NULL,d=.2,sig.level=.05,power=.80,type="paired",alternative="two.sided")

##
## Paired t test power calculation
##
## n = 198.1508
## d = 0.2
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number of *pairs*

# Example for paired design with Cohen's d = .2 - get power given N
pwr_value<-pwr.t.test(n=40,d=.2,sig.level=.05,power=NULL,type="paired",alternative="two.sided")
print(pwr_value)

##
## Paired t test power calculation
##
## n = 40
## d = 0.2
## sig.level = 0.05
## power = 0.2345965
## alternative = two.sided
##
## NOTE: n is number of *pairs*
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print(pwr_value$power)

## [1] 0.2345965

Although the concept of power is often taught at the undergraduate level, power calculations can be consider-
ably more complex than they may seem. This complexity stems from the inherent uncertainty in estimating
key parameters that are used in power calculations. Part of this uncertainty is a product of publication bias
- the preferential publication of p-values less than .05 (and by extension effect sizes that likely overestimate
the true population effect size). The other element of uncertainty concerns the validity of the effect size
estimate that is used to calculate power and/or sample size. Both of these sources of uncertainty can impact
power and sample size calculations, and typically lead to under-powered experiments due to required sample
sizes being underestimated.

Power and Assurance

Fortunately, methods have been developed that can (at least partially) correct for these biases. To understand
these methods, it is important to understand the concept of assurance - the long-run probability that the
achieved power of an experiment would reach or exceed the desired level (e.g., power = .80). To understand
assurance, one must appreciate the fact that estimates of effect size are just that - estimates. To calculate
the actual power of a study, we are required to know the population effect size. Of course, we almost never
know the true value of δ, and so we estimate it based on the effect size calculated from a representative
sample. Keep in mind, however, that the estimated effect size obtained from a sample of data is not a
precise estimator of the true population effect size. An obtained Cohen’s d = .8 may well reflect a true
δ = .8, but it is almost equally as likely to be obtained when δ = .3 when it is calculated from a sample of
n = 25. The precision with which d estimates δ depends on sample size - the number of participants in the
sample for which d was calculated. Consider the figure below:
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From the figure it is clear that the precision with which d estimates δ is heavily dependent on the sample
size on which d is calculated. The uncertainty in this estimate poses serious problems for accurate sample
size calculations, as it becomes difficult to determine the appropriate value of δ to use in this calcuation.

As a consequence of this uncertainty, the actual power achieved by a given experiment can fall well below
the desired level. If we knew that δ = .8, and we use this value to calculate the sample size needed to
acheive a power = .80, then 4/5 experiments would correctly reject the null hypothesis. However, because
we don’t know δ, and we have to use Cohen’s d = .80 instead, there is no guarantee that 4/5 experiments
will correctly reject the null hypothesis. In reality, the proportion of experiments that correctly reject the
null hypothesis is likely to be far less than .80, especially when small sample sizes are used.

On the bright side, there are alternative power and sample size calculations that can correct for the bias
that is introduced by publication bias and the uncertainty in estimating δ. These calculations allow you to
determine the required sample size that is needed to reach the desired level of power with a specified level of
assurance. For example, one could ask, “How big does our sample size need to be in order achieve a power
= .80 X% of the time?” These modified power and sample size calculations can be easily implemented for
a variety of different experimental designs using the BUCSS (Bias and Uncertainty Corrected Sample Size)
package for R.

Using the BUCSS Package

library(BUCSS) # first install.packages("BUCSS")
ls("package:BUCSS") # List functions within the BUCSS package

## [1] "ss.power.ba" "ss.power.ba.general" "ss.power.dt"
## [4] "ss.power.it" "ss.power.reg.all" "ss.power.reg.joint"
## [7] "ss.power.reg1" "ss.power.spa" "ss.power.spa.general"
## [10] "ss.power.wa" "ss.power.wa.general"

These functions allow you to calculate the appropriate sample size needed to achieve the desired level of
power after correction for publication bias and paramater (δ) uncertainty. These functions are also available
on a web app (created using R) and can be found at: https://designingexperiments.com/shiny-r-web-apps

# Example for paired design (dependent t-test) - previous study reported t-value = 3.00, N=40
smpl_size_prior<-ss.power.dt(t.observed=3,N=40,alpha.prior=.05,alpha.planned=.05,

assurance=.9,power=.8)

print(smpl_size_prior)

## [1] 8092

# Example for paired design (dependent t-test) - pilot study reported t-value = 2.40, N=40
smpl_size_pilot<-ss.power.dt(t.observed=3,N=40,alpha.prior=1,alpha.planned=.05,

assurance=.9,power=.8) # Set alpha.prior = 1

print(smpl_size_pilot)

## [1] 121
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# Example for pilot study using 2 X 2 factorial repeated-measures design using
# RM-ANOVA (F = 4.55, N = 36; for interaction)
w_ANOVA_smpl_size<-ss.power.wa(F.observed=4.55,N=36,levels.A=2,levels.B=2,

effect="interaction",alpha.prior=1,alpha.planned=.05,
assurance=.9,power=.8) # Set alpha.prior = 1

print(w_ANOVA_smpl_size)

## [1] 466

Simulating Power and Sample Size

Power Curves

In addition to power calculations that specify a given N required for a desired level of power, it is often
useful to know precisely how power increases with sample size for a given effect size. Generating a power
curve can reveal this relationship to help you better decide on an appropriate N for your experiment. Here’s
an example of a power curve for a paired design with δ = .2

n_subj<-seq(10,1000,10) # Create vector of N's

power<-sapply(n_subj,
FUN=function(x){

pwr.t.test(n=x,
d=.2,
sig.level=.05,
type="paired",
alternative="two.sided")$power})

power_curve_data<-data.frame(n_subj,power)

library(tidyverse)
ggplot(data=power_curve_data,aes(x=n_subj,y=power)) +

geom_point(size=2) +
geom_line() +
theme_classic(base_size=14) +
ggtitle("Power Curve (d=.2; Paired Design)") +
theme(plot.title = element_text(hjust = 0.5))
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Power Curve (d=.2; Paired Design)

In experimental psychology, we typically measure participants’ behaviour more than once per condition. In
other words, we include multiple trials within a condition. This procedure ensures that we are obtaining
an accurate estimate of how that individual performs in any given condition of the experiment. It turns
out that the number of trials per condition can also impact power, and is therefore an important variable
to consider when planning an experiment. Unfortunately, most power calculations do not take into account
how power can be affected by the number of trials in a given condition.

However, we can obtain a rough estimate of how trial number affects power by running a simulation. Simula-
tions allow us to create a world in which we “know” the relevant parameters, and allow us to see what would
happen theoretically if we were to systematically vary those parameters. In our case, we can simulate power
while varying both number of trials and sample size. Let’s walk through an example of such a simulation
for an independent groups design with a single factor comprised of two levels.

# Function to simulated power based on no. trials per condition and no. subjects

# nsubs sets number of subjects
# ntrials to change number of trials
# d sets effect size - Cohen's d
# this simulation is for a independent-groups design using a t-test
# assumes homogeneity of variance

sim_power <- function(nsubs,ntrials,d,sdev_b,sdev_w){
A <- c()
B <- c()
for (i in 1:nsubs) {
# Get distribution of subject means in Cond A
Asub_means <- rnorm(n=nsubs,mean=1800,sd=sdev_b)
# Sample ntrials from each subject mean
A[i] <- mean(rnorm(n=ntrials,mean=sample(Asub_means,size=1),sd=sdev_w))
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# Convert standardized mean difference (d) into raw mean difference
raw_diff <- sdev_b*d
# Get distribution of subject means in Cond B
Bsub_means <- rnorm(n=nsubs,mean=1800+raw_diff,sd=sdev_b)
# Sample ntrials from each subject mean
B[i] <- mean(rnorm(n=ntrials,mean=sample(Bsub_means,size=1),sd=sdev_w))
}
return(t.test(A,B,var.equal=TRUE)$p.value) # Get p-value from independent groups t-test

}

# vectors for number of subjects and trials
n_subs_vector <- c(10,20,30,50,75,100)
n_trials_vector <- c(10,20,30,50,100)

# a loop to run all simulations
power <- c()
subjects <- c()
trials <- c()

d <- .5 # medium effect size
sdev_b <- 200 # pooled between-subjects SD
sdev_w <- 500 # average within-subjects SD
n_reps <- 1000 # number of simulations to run

i <- 0 # use this as a counter for indexing
for(s in n_subs_vector){

for(t in n_trials_vector){
i <- i+1
sims <- replicate(n_reps,sim_power(s,t,d,sdev_b,sdev_w))
power[i] <- length(sims[sims<.05])/length(sims)
subjects[i] <- s
trials[i] <- t

}
}

# combine into dataframe
plot_df <- data.frame(power,subjects,trials)
plot_df$trials<-as.factor(plot_df$trials)

# plot the power curve
ggplot(plot_df, aes(x=subjects,y=power,group=trials,color=trials)) +

geom_point(size=2) +
geom_line() +
labs(x="Sample Size (N)") +
ggtitle("Power As Function of Trials and Sample Size (d = .5)") +
theme_classic(base_size=14) +
theme(plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(limits=c(0,1))
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