
Lab Tutorial 5: Controlling Type I Error - Multiple
Comparisons
Chris M. Fiacconi

Multiple Comparisons: Illustrating the Problem

In this tutorial, we will discuss the multiple comparisons problem, namely, that when conducting multiple
tests on a dataset, the probability of committing at least one Type I error can be substantially greater
than the nominal value of .05. In other words, when conducting multiple tests each with a αPC = .05, the
experiment or family-wise Type I Error rate, αFW , is likely to exceed .05. Specifically, the probability of
committing at least one Type I Error when testing C comparisons each with αPC = .05 can be computed
as:

αFW = 1− (1− αPC)C

So if we conduct C = 3 tests, our αFW = 1 − (1 − .05)3 = .143, which is substantially higher than the
αPC = .05. As C increases, so too does our αFW . One way of controlling this Type I Error inflation is to
choose an αPC such that, given C tests, will yield a αFW = .05. This adjusted αPC can be calculated as:

αPC = 1− C
√

1− αFW

Based on the above equation, if we wished to test C = 3 contrasts, we would need to set αPC = .017 to
maintain a αFW = .05.

Planned Vs. Post-Hoc Comparisons

Another questionable practice that can result in an increase in Type I Errors is inspecting the data post-hoc
and then choosing which comparisons to perform. This is problematic because often the comparisons that
one would choose to perform in this situation involve the largest group differences (to maximize the likelihood
of obtaining a significant effect). Assuming the null hypothesis is true, always comparing the groups with
the largest difference will result in a αPC > .05. Therefore, we need different approaches to controlling αFW
when the comparisons are planned (decided before looking at the data) vs. post-hoc (decided after looking
at the data).

Controlling Type I Error - Planned Comparisons

Bonferroni Adjustment

When multiple comparisons are planned in advance of examining the pattern of means in the data, the most
common method of controlling αFW is Bonferroni’s adjustment procedure. This approach requires that you
simply divide the αPC by the number of comparisons, C, to get the new αPC that ensures αFW = .05. So if
we are planning on performing C = 3 comparisons, our new αPC = .05/3 = .0167. The p-value associated
with each comparison must now be < .0167 in order to qualify as statistically significant.

Note however, that we have the flexibility to divide up the original αPC into three non-equal pieces. If the
first comparison were of particular interest, and we wanted to maximize power, we could chose an α = .03
for this comparison and use α = .01 for the other two comparisons so long as they sum to .05. If we choose
this approach, however, we have to decide how to divide up the original .05 before we look at the data.

Let’s go through an example using the data from Example #1 in the previous tutorial:
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Figure 1: Boxplot of data derived from MDK Chapter 4 exercise 11

ex.data<-read.table(file="Ch4E11.txt",header=T)
boxplot(dv~cond,las=1,xlab="Condition",ylab="DV",data=ex.data)

In the previous tutorial, we went through an example in which we tested whether the average of the Treatment
conditions was greater than the Control condition using a linear contrast. Let’s say that prior to collecting
these data, we also wanted to know whether each Treatment condition was greater than the Control condition.
We could in principle conduct three t-tests to answer this question, but let’s instead perform three linear
contrasts of the following form:

ψ1 = µ2 − µ1

ψ2 = µ3 − µ1

ψ3 = µ4 − µ1

By using linear contrasts rather than t-tests, our estimate of the population error variance is more precise,
because we’re pooling the error variance from all four conditions in each contrast, rather than using only
the error variance from the two conditions we’re comparing. Let’s use the linear.comparison command to
perform all three contrasts simultaneously:

source("lin_comp.R") # load in linear.comparison function

alpha.pc<-.05
n.comp<-3

adj.alpha<-alpha.pc/n.comp # Calculate new per-comparison alpha using Bonferroni adjustment
print(round(adj.alpha,digits=3))
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## [1] 0.017

# Define contrast weights
c1<-c(-1,1,0,0)
c2<-c(-1,0,1,0)
c3<-c(-1,0,0,1)

my.contrasts<-list(c1,c2,c3) # Combine all contrasts into a list

linear.comparison(y=ex.data$dv,group=ex.data$cond,c.weights=my.contrasts,var.equal=TRUE)

## [1] "computing linear comparisons assuming equal variances among groups"
## [1] "C 1: F=6.914, t=2.630, p=0.016, psi=1.833, CI=(0.181,3.486), adj.CI= (0.012,3.655)"
## [1] "C 2: F=1.429, t=1.195, p=0.246, psi=0.833, CI=(-0.633,2.300), adj.CI= (-0.988,2.655)"
## [1] "C 3: F=2.800, t=1.673, p=0.110, psi=1.167, CI=(-0.048,2.381), adj.CI= (-0.655,2.988)"

Our new αPC = .017, so only p-values less than .017 are now considered statistically significant. You can
see from the output that only the first comparison, ψ1 = µ2 − µ1, F (1, 20) = 6.91, p = .016, ψ1 = 1.833, was
significant (p < .017) according to our new adjusted criterion for significance.

The Bonferroni procedure generally does a good job of ensuring that αFW = .05 for multiple planned
comparisons when the group variances are equal. With unequal variances, the procedure is slightly different.
See your textbook for details.

It should also be mentioned that some view adjusting αPC for planned comparisons using the Bonferroni
approach as too conservative. Remember, the smaller αPC becomes, the less power we have to detect
true population differences. For this reason, some researchers have argued that when a small number of
comparisons (e.g., ≤ 3) are planned in advance, leaving αPC = .05 is justified. Note that this more liberal
approach does necessarily mean that αFW > .05, but some argue that the corresponding increase in power
more than offsets this increase in family-wise Type I Error. You’ll see once we discuss factorial ANOVAs
that often times researchers do indeed conduct 3 or more planned comparisons with αPC = .05.

Simultaneous Confidence Intervals

We have seen previously that there is a close relationship between 95% CIs and p-values, such that if a 95%
CI on the difference between two population means does not include zero, then p is necessarily <.05 for that
comparison. By definition, such a 95% CI will capture the true population difference between these means 19
times out of 20. However, this definition of a 95% CI is directly analogous to the situation where αPC = .05.
When we are performing multiple comparisons, C, it is possible to instead compute a set of 95% CIs such that
95% of the time all C confidence intervals will contain the difference in their respective population means.
These CIs are known as simultaneous confidence intervals and are directly analogous to situations where
αPC is modified to maintain αFW = .05. When using the Bonferroni adjustment to control αFW , the formula
for a 95% simultaneous confidence interval for multiple linear contrasts is:

ψ ±
√
F.05/C;1;N−k

√√√√MSW

k∑
j=1

(c2
j/nj)

Fortunately, you don’t need to calculate these intervals by hand, as the linear.comparison function outputs
them for you. The 95% simultaneous CIs are given by the adj.CI value in the output.

95% simultaneous CIs can also be calculated from other multiple comparison procedures as well, including
those designed to hand post-hoc comparisons. As we discuss the other methods of controlling αFW , we will
illustrate how such confidence intervals can be computed.
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Post-Hoc Comparisons

So far, we have focused on how to control αFW in situations where multiple planned comparisons are to
be conducted. Although it is always advisable to develop a priori comparisons of interest, it is sometimes
informative to test multiple comparisons after peeking at the data. This approach is only permissible if one
adopts the appropriate procedures for controlling the αFW . We will discuss how to conduct these post-hoc
comparisons both in situations where all pairwise comparisons are of interest, and when multiple complex
comparisons are desired.

All Pairwise Comparisons - Tukey HSD

In many situations, a researcher may want to examine all pairwise comparisons to locate the differences
among population means. Often, the interest in all pairwise comparisons is piqued when the initial omnibus
ANOVA test is significant. Recall that a significant omnibus ANOVA only indicates that the population
means under consideration are not all equal. It does not specify which means are different. Therefore,
pairwise comparisons are subsequently conducted to hone in on the specific group differences.

As discussed in Lab Tutorial 3, a common test used to evaluate all possible pairwise comparisons is Tukey’s
HSD procedure. This procedure allows the researcher to examine all pairwise contrasts in the data while
maintaining αFW = .05. Tukey’s HSD is based on the sampling distribution of the maximum pairwise
difference among a set of pairwise contrasts. So under the null hypothesis that all population means are
equal, one might ask, “How big should we expect the maximum difference among C pairwise comparisons to
be based on random sampling error alone?” The F -value for the maximum pairwise difference is calculated
as:

Fpmax = n(Y max − Y min)
2MSW

The distribution of this F -statistic is known as the studentized range distribution and is represented using the
letter q where q =

√
2Fpmax. So for each pairwise comparison, you would convert the obtained F -value to a

q-value using the above equation, and then compare this number to a critical q-value. This critical q-value
is chosen to maintain αFW = .05. Note that as shown in Table 5.6 in your textbook, the critical value of
q increases rapidly as the number of pairwise comparisons increases. Thus, the more pairwise comparisons
you perform, the harder it becomes to reject the null hypothesis that no population group difference exists.

In R the Tukey HSD test is very straightforward to conduct. Simply perform a one-way ANOVA and save
the output to an aov object. This aov object serves as the input argument to the TukeyHSD command:

ex.aov<-aov(dv~cond,data=ex.data) # Perform ANOVA to create aov object
TukeyHSD(ex.aov) # Pass aov object to TukeyHSD command

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dv ~ cond, data = ex.data)
##
## $cond
## diff lwr upr p adj
## Treat1-Control 1.8333333 -0.1181317 3.784798 0.0703035
## Treat2-Control 0.8333333 -1.1181317 2.784798 0.6367716
## Treat3-Control 1.1666667 -0.7847983 3.118132 0.3630075
## Treat2-Treat1 -1.0000000 -2.9514650 0.951465 0.4937164
## Treat3-Treat1 -0.6666667 -2.6181317 1.284798 0.7752460
## Treat3-Treat2 0.3333333 -1.6181317 2.284798 0.9630632
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Figure 2: 95% Simultaneous Confidence Intervals based on Tukey’s HSD pairwise comparison procedure

Note that it is not necessary to report the results of the ANOVA beforehand. If all pairwise comparisons
are of interest, it is perfectly reasonable to jump right ahead and use the TukeyHSD function.

Simultaneous 95% CIs that correspond to pairwise comparisons using the Tukey HSD procedure can be
calculated as follows:

(Ȳg − Ȳh)± (q.05;k,N−k/
√

2)
√
MSW ( 1

ng
+ 1
nh

)

Fortunately, these simultaneous 95% CIs are included in the output. The lower and upper limits of these
CIs are indicated by lwr and upr, respectively. You can also plot these simulataneous 95% CIs with the
following code:

plot(TukeyHSD(ex.aov),yaxt="n")
axis(side=2,at=c(6,5,4,3,2,1),labels=c("T1-C","T2-C","T3-C","T2-T1","T3-T1","T3-T2"),las=1)

It appears as though the first pairwise comparison (Treat1-Control) is not significant using
Tukey’s HSD test, but it was significant when we performed a linear contrast comparing these
two groups above. Why might this be?

Complex Comparisons - Scheffe’s Method

Tukey’s HSD maintains αFW = .05, but is appropriate only when all post-hoc comparisons of interest are
pairwise. When some of the comparisons involve complex linear contrasts, Scheffe’s Method is used. Similar
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to Tukey’s HSD, Scheffe’s Method requires us to compute a new critical value of our test statistic (in this
case F) to which we compare our observed F -statistic. This new critical value of F is known as FScheffe:

FScheffe = (k − 1)× FαFW (df1 = k − 1, df2 = N − k)

We can calculate FScheffe in R for a study with k = 4 groups (n = 6 each) using the following commands:

alpha.fw<-.05
df.num<-4-1
df.denom<-24-4

F<-qf(1-alpha.fw,df1=df.num,df2=df.denom)
F.scheffe<-(4-1)*F
print(round(F.scheffe,digits=3))

## [1] 9.295

So for any linear contrast, ψ, if the observed value of F > 9.295, we can reject the null hypothesis. Note
that you can now test as many post-hoc linear contrasts as you like so long as you use this critical value of
F for each contrast.

Simultaneous 95% CIs that correspond to complex linear contrasts using the Scheffe Method can be calculated
as follows:

ψ ±
√

(k − 1)F.05;k−1;N−k

√√√√MSW

k∑
j=1

(c2
j/nj)

Let’s suppose that after running the study and plotting the means, I decide to test whether the Treat1
condition yields better results than the other two treatment conditions, Treat2 and Treat3. Furthermore,
I want to test whether the Treat1 condition is different than the mean of the other three conditions. Let’s
use R to do this with the linear.comparison function together with the Scheffe Method of evaluating each
linear contrast:

print(F.scheffe)

## [1] 9.295174

c1<-c(0,2,-1,-1) # Define contrast weights for comparison 1
c2<-c(-1,3,-1,-1) # Define contrast weights for comparison 2

phoc.contrasts<-list(c1,c2) # Combine contrast weights into a single list
linear.comparison(y=ex.data$dv,group=ex.data$cond,c.weights=phoc.contrasts,var.equal=TRUE)

## [1] "computing linear comparisons assuming equal variances among groups"
## [1] "C 1: F=1.905, t=1.380, p=0.183, psi=1.667, CI=(-1.192,4.525), adj.CI= (-1.260,4.593)"
## [1] "C 2: F=4.200, t=2.049, p=0.054, psi=3.500, CI=(-0.692,7.692), adj.CI= (-0.638,7.638)"

The obtained F -statistic for both contrasts < FScheffe = 9.295, so we fail to reject the null hypothesis for
each test.

Another important feature of Scheffe’s Method is that it is mutually consistent with the omnibus F -test.
That is, if the omnibus F -test comparing all group means is significant, there will always be at least one
contrast that is also significant. In contrast, if the omnibus F -test is not significant, then there are no
contrasts that will be significant. This property of Scheffe’s Method differs from Tukey’s HSD procedure
because with the latter, it is possible to reject the null hypothesis from the omnibus F -test and not find any
significant pairwise comparisons with Tukey’s HSD test.
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