
Lab Tutorial 6: Factorial Analysis of Variance
(ANOVA): Between-Subjects Designs

Chris M. Fiacconi

To date, we have discussed how to analyze research designs that contain one indpendent variable (IV).
When this IV has two levels, a t-test is usually appropriate. When three or more levels of an IV are present,
ANOVAs are commonly used. In this lab, we will examine how to analyze data from research designs in
which two (or more) IVs are present, and in which both variables are manipulated between-subjects. As
you’ll see, many of the principles from one-way ANOVAs still apply, but are expanded upon in situations
where more than one IV is present.

The 2 X 2 Factorial Design

Consider the following experiment: A researcher wants to compare the effectiveness of both Drug Therapy
and BioFeedback on systolic blood pressure (SBP). To do so, participants are assigned randomly to four
different groups: Biofeedback + Drug (1), BioFeedback only (2), Drug only (3), or no treatment (4; neither
BioFeedback nor Drug Therapy). This design can be illustrated in Figure 1 below:

Main Effects

Although you could in principle conduct a one-way omnibus ANOVA on the SBP scores across groups, the
researcher instead wants to conduct the following planned linear contrasts:

ψ1 = 1
2(µ1 + µ2) − 1

2(µ3 + µ4)

ψ2 = 1
2(µ1 + µ3) − 1

2(µ2 + µ4)

Therefore, the weights for the first contrast are (0.5, 0.5, -0.5, -0.5), and the weights for the second contrast
are (0.5, -0.5, 0.5, -0.5). You should note two things here:
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Figure 1: Plot depicting data from MDK Chapter 7 Table 1.

1) First, note that these two contrasts are orthogonal:

a∑
j=1

c1jc2j = 0

2) The first contrast compares the average of the groups where BioFeedback is present vs. the average of the
groups where BioFeedback is absent, whereas the second contrast compares the average of the groups where
Drug Therapy is present vs. the average of the groups where Drug Therapy is absent. In other words, the
first contrast examines the effect BioFeedback irrespective of whether Drug Therapy is present or absent,
and the second contrast examines the effect of Drug Therapy irrespective of whether BioFeedback is present
or absent. Therefore, each contrast tests the main effect of BioFeedback and Drug Therapy, respectively.
Let’s take a look at how these main effects look visually in Figure 2:

# Load in data
bp.data<-read.table(file="Ch7T1.txt",header=T)

# Make figure
with(bp.data,interaction.plot(x.factor=Drug,

trace.factor=BioFeedback,response=Score,las=1,
ylab="Mean SBP",xlab="Drug Therapy",ylim=c(160,200),
bty="n",type="b",cex=1.5,pch=c(17,19))) # make plot, remove outer box

axis(side=1,at=c(1,2),labels=c("Absent","Present")) # add in x-axis with ticks and labels

How many participants are in each condition?
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# Load tidyverse
library(tidyverse)

bp.n<-bp.data %>% group_by(Drug,BioFeedback) %>% summarize(n=length(Score)) # Get n per group
print(bp.n)

## # A tibble: 4 x 3
## # Groups: Drug [?]
## Drug BioFeedback n
## <fct> <fct> <int>
## 1 Absent Absent 5
## 2 Absent Present 5
## 3 Present Absent 5
## 4 Present Present 5

Let’s get the means and SDs for each condition.

# Get mean and standard deviation
bp.descriptives<-bp.data %>% group_by(Drug,BioFeedback) %>%

summarize(Mean=mean(Score),S.Dev=sd(Score))

print(bp.descriptives)

## # A tibble: 4 x 4
## # Groups: Drug [?]
## Drug BioFeedback Mean S.Dev
## <fct> <fct> <dbl> <dbl>
## 1 Absent Absent 190 7.91
## 2 Absent Present 188 7.91
## 3 Present Absent 186 7.91
## 4 Present Present 168 7.91

From Figure 2 we can see that the circle points (BioFeedback present) are generally higher than the triangle
points (BioFeedback absent), suggesting that overall, BioFeedback lowers SBP. Likewise, the points on the
right of the graph are generally lower than the points on the left of the graph, suggesting that overall, Drug
Therapy also lowers SBP.

Testing Main Effects: Model Comparison

Although it is not incorrect to think of this design as involving four separate conditions, it is customary to
treat this design as resulting from the crossing of two different IVs (BioFeedback & Drug Therapy). In this
example, each IV has two levels, with each level being paired with each level of the other IV to form the
four different conditions/groups.

As was the case when we considered one-way designs with a single IV, we can also apply the model comparison
perspective to understand how a factorial design can be accomodated within the framework of the General
Linear Model. In the general case of two indpendent variables with Factor A having a levels, and Factor B
having b levels, the full model can be written as:

Yijk = µ+ αj + βk + (αβ)jk + εijk

where µ again represents the grand mean, αj represents the effect of being in the jth level of Factor A, βk

represents the effect of being in the kth level of Factor B, (αβ)jk represents the interaction effect of being
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in level j of Factor A and level k of Factor B in combination with one another. We’ll discuss the interaction
term in greater detail later on.

To test for the main effect of Factor A, we would need to compare the relative fit of the full model with a
restricted model that is identical to the full model except for the absence of the αj parameters:

Yijk = µ+ βk + (αβ)jk + εijk

The null hypothesis that is being tested in this comparison is that all µj ’s are equal, or equivalently, that all
αj = 0.

Similarly, to test for the main effect of Factor B, we would need to compare the relative fit of the full model
with a restricted model that is identical to the full model except for the absence of the βk parameters:

Yijk = µ+ αj + (αβ)jk + εijk

The null hypothesis that is being tested in this comparison is that all µk’s are equal, or equivalently, that
all βk = 0.

The relative fit of the full and restricted models is again computed by examining the difference in the residuals
between the models, and can be expressed as an F -statistic:

F = (ER − EF )/(dfR − dfF )
EF /dfF

You can calculate the df for the numerator and the denominator of the F -statistic when testing the main
effect of Factor A as follows:

dfR − dfF = a− 1

dfF = ab(n− 1)

You can calculate the df for the numerator and the denominator of the F -statistic when testing the main
effect of Factor B as follows:

dfR − dfF = b− 1

dfF = ab(n− 1)

Once again, all αj and βk parameters are constrained to sum to zero:
a∑

j=1
αj = 0

b∑
k=1

βk = 0

Each parameter is defined relative to the grand mean as before:

αj = Ȳj. − µ

βk = Ȳ.k − µ

where Ȳj. is the marginal mean of the jth level of Factor A calculated as:

Ȳj. =
b∑

k=1
Ȳjk/b

and Ȳ.k is the marginal mean of the kth level of Factor B, calculated as:

Ȳ.k =
a∑

j=1
Ȳjk/a
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The αj and βk parameters can also be used to calculate the sums-of-squares associated with each main effect.
For an equal-n design:

SSA = nb

a∑
j=1

α2
j

SSB = na

b∑
k=1

β2
k

Alternatively, both SSA and SSB can be calculated from their respective marginal means along with the
grand mean:

SSA = nb

a∑
j=1

(Ȳj. − µ)2

SSB = na

b∑
k=1

(Ȳ.k − µ)2

where n is the number of observations within each cell.

The null hypothesis for Factor A is that all αj = 0, and the null hypothesis for Factor B is that all βk = 0.

Finally, the sum-of-squares associated with the residuals, or SSW ithin, is calculated as follows:

SSW ithin = EF =
a∑

j=1

b∑
k=1

n∑
i=1

(Yijk − Ȳjk)2

Essentially, SSW ithin represents the sum across individuals and groups of how far an individual’s score
deviates from their corresponding cell mean, Ȳjk, and can be thought of as a measure of prediction error.

Interactions

Recall that in a study with a = 4 groups, there are a − 1 possible orthogonal contrasts. So far, we have
discussed only two of the three. The third orthogonal contrast is of the form:

ψ3 = 1
2(µ1 − µ3) − 1

2(µ2 − µ4)

with the weights for this contrast being (0.5, -0.5, -0.5, 0.5). We could also use the weights (-0.5, 0.5, 0.5,
-0.5), but this is essentially the same contrast, just flipped.

Importantly, this contrast captures the interaction between Drug and BioFeedback, allowing the effect of
one IV to depend on the level of the other IV. In particular, the above contrast tests whether the difference
between the levels of the biofeedback variable when drug therapy is present is different than the difference
between the levels of the biofeedback variable when drug therapy is absent. In other words, it tests whether
the effect of biofeedback depends on whether drug therapy is present or absent. Such dependency of the
effect of one IV on the level of the other is the hallmark of interaction effects, and the ability to test for an
interaction is a critical advantage of factorial designs.

Referring back to Figure 2, it can be seen that indeed it appears as though the effect of biofeedback depends
heavily on the presence of drug therapy. The effect of biofeedback is much greater when drug therapy is also
present than when it is absent.
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Testing Interactions: Model Comparisons

In terms of model comparisons, testing for the presence of an interaction is tantamount to comparing the
full model

Yijk = µ+ αj + βk + (αβ)jk + εijk

with the following restricted model which omits only the (αβ)jk interaction term:

Yijk = µ+ αj + βk + εijk

This comparison again involves comparing the relative fit of the two models using the same F -statistic:

F = (ER − EF )/(dfR − dfF )
EF /dfF

where the numerator df is equal to:
dfR − dfF = (a− 1)(b− 1)

and the denominator df is calculated the same way as before:

dfF = ab(n− 1)

The (αβ)jk parameters represent the degree to which the cell mean Ȳjk deviates from the sum of the
corresponding αj and βk effects and are calculated as follows:

(αβ)jk = Ȳjk − (µ+ αj + βk)

Therefore, the null hypothesis tested in this comparison is that all (αβ)jk = 0.

Similar to SSA and SSB , SSAB can be calculated as follows:

SSAB = n

a∑
j=1

b∑
k=1

(αβ)2
jk

SSAB is also the difference in the residuals between the restricted and full models (ER − EF ) that capture
the interaction effect shown above.

The null hypothesis for the interaction between Factor A and Factor B is that all (αβ)jk = 0.

Note that a factorial ANOVA (with equal n groups) is really a collection of three orthogonal
contrasts that evaluate each main effect and the interaction between IVs. You might wonder
whether we need to introduce a correction to ensure that αF W = .05. However, such a correction
is not typically done as each contrast and any subsequent comparisons are considered to be a
different family of tests.

Simple Main Effects

A significant interaction usually supercedes any significant main effects because it tells us that the effect of
one IV depends on the level of the other IV. However, a researcher will often want to probe further to test
whether the effect of one IV is significant within each level of the other. Such tests are known as simple
main effects because they examine the effect of an IV within each level of the other IV. I will show you how
to conduct such tests in the following example.
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Example #1 - 2 X 2 Design

Let’s use the data from Figure 1 to illustrate how to analyze a 2 X 2 design using R. First, there are many
different ways to conduct a factorial ANOVA in R, but we’ll start by showing how each main effect and the
interaction can be computed using the lm followed by the anova function:

options(contrasts=c("contr.sum","contr.poly"))

model.full<-lm(Score~1+Drug+BioFeedback+Drug:BioFeedback,data=bp.data)
# Equivalent to lm(Score~Drug*BioFeedback,data=bp.data)

anova(model.full) # Compare appropriate nested models for each main effect and interaction

## Analysis of Variance Table
##
## Response: Score
## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 1 720 720.0 11.52 0.003706 **
## BioFeedback 1 500 500.0 8.00 0.012109 *
## Drug:BioFeedback 1 320 320.0 5.12 0.037917 *
## Residuals 16 1000 62.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA indicates that there is a significant main effect of both Drug, F (1, 16) = 11.52, p = .004, and
BioFeedback, F (1, 16) = 8.00, p = .012, as well as a significant Drug:BioFeedback interaction, F (1, 16) =
5.12, p = .038.

You can also use the aov and summary commands as before:

sbp.aov<-aov(Score~Drug*BioFeedback,data=bp.data) # Do ANOVA
print(summary(sbp.aov)) # print summary of results

## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 1 720 720.0 11.52 0.00371 **
## BioFeedback 1 500 500.0 8.00 0.01211 *
## Drug:BioFeedback 1 320 320.0 5.12 0.03792 *
## Residuals 16 1000 62.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The SS for each effect in the model (2 main effects + interaction) are calculated by comparing the difference
in the residuals between the full and restricted models for each effect as described above. Let’s illustrate this
by comparing the difference in the sum of the squared residuals from the following nested models to obtain
SSDrug.

# Examine main effect of Drug using intercept-only restricted model
drug.restricted<-lm(Score~1,data=bp.data) # Define intercept-only model
drug.full<-lm(Score~1+Drug,data=bp.data) # Define intercept + Drug model

SS.drug<-sum((residuals(drug.restricted)^2))-sum((residuals(drug.full)^2))
print(SS.drug)
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## [1] 720

anova(drug.restricted,drug.full)

## Analysis of Variance Table
##
## Model 1: Score ~ 1
## Model 2: Score ~ 1 + Drug
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 19 2540
## 2 18 1820 1 720 7.1209 0.01566 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that SSDrug and the main effect of Drug can also be evaluated by comparing two nested models that
control for the influence of BioFeedback. Because the procedure for evaluating each main effect essentially
involves two orthogonal contrasts, SSDrug will be identical in both cases. The following code illustrates this
point by comparing two nested models in which BioFeedback is already entered into each model:

# Examine main effect of Drug after controlling for BioFeedback
drug2.restricted<-lm(Score~1+BioFeedback,data=bp.data)
drug2.full<-lm(Score~1+BioFeedback+Drug,data=bp.data)

SS.drug2<-sum((residuals(drug2.restricted)^2))-sum((residuals(drug2.full)^2))
print(SS.drug2)

## [1] 720

anova(drug2.restricted,drug2.full)

## Analysis of Variance Table
##
## Model 1: Score ~ 1 + BioFeedback
## Model 2: Score ~ 1 + BioFeedback + Drug
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 18 2040
## 2 17 1320 1 720 9.2727 0.007315 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that SSDrug = ER − EF = 720 in both comparisons, which is the same as in the output from the
ANOVA. However, the F and p-values associated with the main effect of Drug differ in each comparison.
Why might this be? It’s because when we did the factorial ANOVA (see sbp.aov), the main effect of Drug
was evaluated after accounting for the main effect of Biofeedback and the Drug:BioFeedback interaction.
Therefore, EF in the denominator of the F -statistic would be smaller in this case, consequently yielding a
larger F -value and a smaller p-value.

Further Evaluation Of A Significant Interaction

As alluded to in the previous section, the presence of a significant interaction usually (but not always!)
renders the main effects moot because it signifies that the effect of an IV is dependent upon the level of the
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other IV, and therefore it does not make sense to interpret the effect of this IV while ignoring the other IV.
If a significant interaction is present, a researcher will usually want to conduct simple main effect tests that
compare the levels of one IV within each level of the other IV.

In our example, we could choose to evaluate the simple main effect of drug therapy both when biofeedback
is present as well as when biofeedback is absent. Alternatively, we could also choose to evaluate the simple
main effect of biofeedback both when drug therapy is present and when drug therapy is absent. Typically
only one set of simple main effects would be tested. The simple main effects that you choose to conduct
should be informed by the primary goal of the research question. If we were primarily interested in the role
of drug therapy in SBP reduction, it might be most informative to examine the effectiveness of drug therapy
with and without concurrent biofeedback. These tests can be carried out using the lm and testInteractions
commands found in the phia package.

library(phia) # Make sure phia package is installed - install.packages("phia")

sbp.lm<-lm(Score~Drug*BioFeedback,data=bp.data) # Create lm object

testInteractions(model=sbp.lm,fixed="BioFeedback",pairwise="Drug",
adjustment="none") # test simple main effect of Drug Therapy

## F Test:
## P-value adjustment method: none
## Value Df Sum of Sq F Pr(>F)
## Absent-Present : Absent 4 1 40 0.64 0.435428
## Absent-Present : Present 20 1 1000 16.00 0.001032 **
## Residuals 16 1000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see from the output that drug therapy significantly lowers SBP when it is paired with biofeedback,
but that it does not have any effect on SBP if biofeedback absent.

Which Error Term To Use for Simple Main Effect Analyses?

Why not simply do two t-tests - each comparing the effect of Drug within each level of BioFeedback? The
answer has to do with which error terms you want to use in your analyses. If we were to conduct t-tests,
our estimate of the within-group error variance would be based solely on the two groups being compared
in the t-test. Most of the time, it is better to use the estimate of error variance based on all experimental
groups, MSW , as we will get a more precise estimate of the true population-level within-group variance.
The testInteractions function does this for us, using MSW from the factorial ANOVA as the error term
for the simple main effects tests.

However, if the homogeneity of variance assumption is violated, it may instead be preferable to use an error
term that is based only on the groups being compared. In this case, t-tests would be more appropriate. Let’s
evaluate the homogeneity of variance for the bp.data scores. First, let’s create a boxplot so we can examine
how the scores across all 4 groups are distributed:

boxplot(Score~Drug+BioFeedback,data=bp.data,las=1,xaxt="n",ylab="SBP")
axis(side=1,at=c(1,2,3,4),labels=c("DAb-BAb","DPr-BAb","DAb-BPr","DPr-BPr"),las=1)

Even though it appears each of our groups has equal variance, let’s formally evaluate this assertion with the
bartlett.test command:
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Figure 2: Boxplot of of data from MDK Chapter 7 Table 1

bartlett.test(Score~Group,data=bp.data) # Note that the Group variable ignores Drug/BioFeedback

##
## Bartlett test of homogeneity of variances
##
## data: Score by Group
## Bartlett's K-squared = 0, df = 3, p-value = 1

We can see from this analysis that there is no evidence to suggest that the homogeneity of variance assumption
is violated, so we’re better off using MSW as the error term in our simple main effect analyses.

Example #2 - Extension To IVs With More Than 2 Levels: 2 X 3
Designs

So far we have been dealing with cases where each IV has only two levels. Often, however, IVs have three
or more levels. Statistical analysis of such designs are very similar to cases in which each IV has only two
levels, with only a slight change in the way in which main effects and simple main effects are examined.

In the next example, researchers were interested in testing the effectivness of two different therapeutic
techniques on hypertension (high blood pressure) - Drug therapy and BioFeedback. Three different drugs
were compared either in combination with Biofeedback, or alone. The dependent variable measured in this
study was systolic blood pressure (SBP). Therefore, we have two IVs (Drug, BioFeedback), with Drug having
three levels (drugX, drugY, drugZ) and BioFeedback having two levels (Absent, Present). Let’s load in the
data file “Ch7T5.txt”.
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bp.data2<-read.table(file="Ch7T5.txt",header=T) # load data from MDK Chapter 7 Table 5
str(bp.data2) # Look at the structure of our data file

## 'data.frame': 30 obs. of 4 variables:
## $ Score : int 170 175 165 180 160 186 194 201 215 219 ...
## $ BioFeedback: Factor w/ 2 levels "Absent","Present": 2 2 2 2 2 2 2 2 2 2 ...
## $ Drug : Factor w/ 3 levels "drugX","drugY",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Subj : int 1 2 3 4 5 6 7 8 9 10 ...

How many participants are in each condition?

# Get n per group
bp2.n<-bp.data2 %>% group_by(Drug,BioFeedback) %>% summarize(n=length(Score))
print(bp2.n)

## # A tibble: 6 x 3
## # Groups: Drug [?]
## Drug BioFeedback n
## <fct> <fct> <int>
## 1 drugX Absent 5
## 2 drugX Present 5
## 3 drugY Absent 5
## 4 drugY Present 5
## 5 drugZ Absent 5
## 6 drugZ Present 5

Let’s get the means and SDs for each condition:

bp2.descriptives<-bp.data2 %>% group_by(Drug,BioFeedback) %>%
summarize(Mean=mean(Score),S.Dev=sd(Score))

print(bp2.descriptives)

## # A tibble: 6 x 4
## # Groups: Drug [?]
## Drug BioFeedback Mean S.Dev
## <fct> <fct> <dbl> <dbl>
## 1 drugX Absent 186 10.8
## 2 drugX Present 170 7.91
## 3 drugY Absent 201 10.9
## 4 drugY Present 203 13.9
## 5 drugZ Absent 210 15.8
## 6 drugZ Present 188 13.8

Now, let’s plot the means for each condition:

with(bp.data2,interaction.plot(x.factor=Drug,
trace.factor=BioFeedback,response=Score,las=1,
ylab="Mean SBP",xlab="Drug",ylim=c(160,220),
bty="n",type="b",cex=1.5,pch=c(17,19))) # make plot, remove outer box

axis(side=1,at=c(1,2,3),labels=c("drugX","drugY","drugZ")) # add in x-axis with ticks and labels
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Figure 3: Plot of data from MDK Chapter 7 Table 5

From looking at the plot in Figure 3, it seems like there might be a main effect of Drug, and possibly a main
effect of BioFeedback. Let’s take a look at the marginal means for each IV:

drug.marg<-bp.data2 %>% group_by(Drug) %>% summarize(Mean=mean(Score))
print(drug.marg)

## # A tibble: 3 x 2
## Drug Mean
## <fct> <dbl>
## 1 drugX 178
## 2 drugY 202
## 3 drugZ 199

fdbk.marg<-bp.data2 %>% group_by(BioFeedback) %>% summarize(Mean=mean(Score))
print(fdbk.marg)

## # A tibble: 2 x 2
## BioFeedback Mean
## <fct> <dbl>
## 1 Absent 199
## 2 Present 187

From these marginal means, we can see that if there is a main effect of Drug, it’s likely driven by drugX
which seems to produce the lowest SBP reading. Moreover, it seems as though the presence of Feedback
may also help reduce SBP. Let’s formally evaluate these main effects and interaction using a 2 X 3 Factorial
ANOVA:
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bp2.aov<-aov(Score~Drug*BioFeedback,data=bp.data2) # perform 2 X 3 ANOVA
summary(bp2.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 2 3420 1710.0 10.979 0.000411 ***
## BioFeedback 1 1080 1080.0 6.934 0.014563 *
## Drug:BioFeedback 2 780 390.0 2.504 0.102877
## Residuals 24 3738 155.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output from the ANOVA yields a main effect of Drug, F (2, 24) = 10.98, p < .001, and Feedback,
F (1, 24) = 6.93, p = .01, but no significant interaction, F (2, 24) = 2.50, p = .10. Because there are only two
levels of Feedback, and the main effect was significant, we can conclude that the presence of Feedback (M =
187) reduced SBP relative to when Feedback was absent (M = 199). But what about Drug? Because there
are three levels, the main effect only tells us that the mean SBP readings are not equal for each drug, but
doesn’t specify which specific drugs have an effect.

Examining Main Effects With More Than Two Levels

As in the case of a one-way between-subjects ANOVA, we now need to specify which drugs have an effect
by conducting more targeted comparisons. If only a few pairwise comparisons are of interest and they
were planned before collecting the data, then Tukey’s HSD procedure would not be appropriate as it is too
conservative in this case. Instead, you should conduct pairwise linear contrasts using Bonferroni’s adjustment
(see Lab Tutorial 5) to maintain αF W = .05. Alternatively, some would argue that if you are doing a small
number of such planned contrasts, you could consider proceeding without correcting for Type I Error inflation
because you would only do such tests when the main effect is significant in the omnibus test.

If none of the pairwise comparisons among levels of the Drug variable were planned, and all such comparisons
are of interest, we could use the TukeyHSD function to perform post-hoc pairwise comparisons between
the marginal means for all three drugs while maintaining αF W = .05. As before, we’ll provide the bp2.aov
model object as an argument to the TukeyHSD function, but we’ll also need to specify which IV we need
to examine pairwise contrasts for with the which argument.

All Pairwise Comparisons (For Post-Hoc Analyses)

drug.phoc<-TukeyHSD(bp2.aov,which="Drug") # Use Tukey's HSD to compare marginal means for Drug
print(drug.phoc)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Score ~ Drug * BioFeedback, data = bp.data2)
##
## $Drug
## diff lwr upr p adj
## drugY-drugX 24 10.062095 37.93791 0.0006958
## drugZ-drugX 21 7.062095 34.93791 0.0026568
## drugZ-drugY -3 -16.937905 10.93791 0.8537283
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Figure 4: Simultaneous 95% CIs for pairwise comparisons of Drug marginal means

# Plot simultaneous 95% CIs
plot(drug.phoc,las=1,yaxt="n")
axis(side=2,at=c(3,2,1),labels=c("Y-X","Z-X","Z-Y"),las=1)

The post-hoc tests reveal that the difference between drugX and drugY is significant, and that the difference
between drugX and drugZ is significant. There is no reliable difference between drugY and drugZ. These
tests line up well with our visual inspection of the means (see plot above).

Linear Contrasts

Instead of performing all pairwise comparisons among the marginal means of Drug, we could also perform a
post-hoc linear contrast in which we test whether the marginal mean for drugX is less than the average of
the marginal means for drugs Y and Z. Recall the general formula for the F -statistic for a linear contrast:

F =
ψ2/

∑a
j=1(c2

j/nj)
MSW

Because this is contrast is post-hoc, we’ll adjust for Type I Error inflation using Scheffe’s Method. If this
was a planned contrast, you would not need to adjust your p-value according to the procedures introduced
in Lab Tutorial 5.

MS.w<-155.8 # Taken from ANOVA table above
n.pergroup<-10 # Note that n = 10 here because we're testing the marginal means!!
c.weights<-c(-2,1,1) # Define contrast weights
psi<-sum(c.weights*drug.marg$Mean) # Calculate psi
F<-((psi^2)/(sum((c.weights^2)/n.pergroup)))/MS.w # Calculate observed F-statistic

F.crit<-qf(p=.95,df1=1,df2=30-3) # Get critical value of F
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F.scheffe<-(3-1)*F.crit # Multiply F.crit by (a - 1) to get F Scheffe

F > F.scheffe # Compare observed F to F.scheffe

## [1] TRUE

p.value<-1-pf(F,df1=1,df2=30-3)
print(p.value)

## [1] 7.712441e-05

Note that our observed F > F Scheffe, so we can conclude that our contrast was indeed significant. You could
report this finding as, F (1, 27) = 21.66, p < .001, where Scheffe’s Method was used to correct for inflation of
Type I Error and maintain αF W = .05.

Example #3 - Extension To IVs With More Than 2 Levels: 3 X 3
Designs

Statistical analysis of designs where each IV has 3 levels are similar to the cases we have discussed so far,
but subsequent analysis of a significant interaction becomes a bit more complex.

In the next example, researchers were interested in comparing the performance of 3 different patient groups
(Amnesic, Huntingtons, and Controls) on 3 different tasks (Recognition, Classification, and Artificial Gram-
mar). Both Classification and Artificial Grammar are implicit memory tasks whereas Recognition is an
explicit memory task. Since Amnesic patients are known to have a deficit in explicit memory and Hunting-
tons patients are thought to have a deficit in implicit memory, the researchers wanted to directly test this
idea by examining how both patient groups (and healthy controls) performed across these three tasks. Let’s
load in the data file “Ch7T11.txt”.

patient.data<-read.table(file="Ch7T11.txt",header=T)
str(patient.data)

## 'data.frame': 45 obs. of 3 variables:
## $ Diagnosis: Factor w/ 3 levels "Amnesic","Control",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Task : Factor w/ 3 levels "Classification",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Y : int 44 63 76 72 45 72 66 55 82 75 ...

# Re-order Diagnosis conditions
patient.data$Diagnosis<-factor(patient.data$Diagnosis, levels=c("Amnesic","Huntingtons","Control"))

Let’s plot the means of each of the 9 conditions as we’ve done before:

with(patient.data,interaction.plot(x.factor=Diagnosis,
trace.factor=Task,response=Y,las=1,
ylab="Mean Score",xlab="Patient Group",
bty="n",type="b",cex=1.5,pch=c(17,18,19))) # make plot, remove outer box

axis(side=1,at=c(1,2,3),labels=c("Amnesic","Huntingtons","Control")) # add in x-axis with ticks and labels

How many participants are in each condition?
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Figure 5: Plot of means of data taken from MDK Chapter 7 Table 11

# Get n per group
patient.n<-patient.data %>% group_by(Diagnosis,Task) %>% summarize(n=length(Y))
print(patient.n)

## # A tibble: 9 x 3
## # Groups: Diagnosis [?]
## Diagnosis Task n
## <fct> <fct> <int>
## 1 Amnesic Classification 5
## 2 Amnesic Grammar 5
## 3 Amnesic Recognition 5
## 4 Huntingtons Classification 5
## 5 Huntingtons Grammar 5
## 6 Huntingtons Recognition 5
## 7 Control Classification 5
## 8 Control Grammar 5
## 9 Control Recognition 5

Let’s get the means and SDs for each condition:

patient.descriptives<-patient.data %>% group_by(Diagnosis,Task) %>%
summarize (Mean=mean(Y),S.Dev=sd(Y))

print(patient.descriptives)

## # A tibble: 9 x 4
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## # Groups: Diagnosis [?]
## Diagnosis Task Mean S.Dev
## <fct> <fct> <dbl> <dbl>
## 1 Amnesic Classification 60 14.9
## 2 Amnesic Grammar 70 10.2
## 3 Amnesic Recognition 65 12.2
## 4 Huntingtons Classification 40 13.2
## 5 Huntingtons Grammar 45 10.9
## 6 Huntingtons Recognition 95 13.4
## 7 Control Classification 80 11.7
## 8 Control Grammar 80 13.0
## 9 Control Recognition 95 13.0

Let’s test for the presence of each main effect and interaction using a 3 X 3 factorial ANOVA:

patient.aov<-aov(Y~Diagnosis*Task,data=patient.data)
print(summary(patient.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
## Diagnosis 2 5250 2625.0 16.637 7.64e-06 ***
## Task 2 5250 2625.0 16.637 7.64e-06 ***
## Diagnosis:Task 4 5000 1250.0 7.923 0.000109 ***
## Residuals 36 5680 157.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MS.w<-157.8 # Store MS Within for later

Although we have a significant main effect of Diagnosis, F (2, 36) = 16.37, p < .001, and Task, F (2, 36) =
16.37, p < .001, the significant interaction, F (4, 36) = 7.92, p < .001 indicates that the effect of Diagnosis on
performance (Y) depends on the Task being performed.

At this point, we need to decide whether we want to examine the simple main effect of Diagnosis for each
Task, or examine the simple main effect of Task for each Diagnosis. Given that researchers seemed most
interested in comparing the performance of the three patient groups across Task, we might decide to examine
the effect of Diagnosis within each level of Task.

Examining The Interaction - Two Approaches

Approach #1 - Multiple One-Way ANOVAs

For the first approach, we need to separate the data into subgroups based on the levels of the Task variable.
Let’s use the filter command found in the tidyverse package:

task.recog<-filter(patient.data,Task=="Recognition")
task.class<-filter(patient.data,Task=="Classification")
task.grammar<-filter(patient.data,Task=="Grammar")

Now we need to compare the performance of each patient group within each of the three Task levels by
conducting 3 one-way ANOVAs using MSW from the omnibus ANOVA as the error term. We could then
follow each significant one-way ANOVA with a series of pairwise tests:
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# Do one-way ANOVA for Recognition Task
recog.aov<-aov(Y~Diagnosis,data=task.recog)
print(summary(recog.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
## Diagnosis 2 3000 1500.0 9.082 0.00396 **
## Residuals 12 1982 165.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MS.diagnosis<-1500
F.recog<-MS.diagnosis/MS.w # Re-calculate F using MS.w
p.value.recog<-1-pf(F.recog,df1=3-1,df2=36)
print(p.value.recog)

## [1] 0.0004845019

TukeyHSD(recog.aov)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Diagnosis, data = task.recog)
##
## $Diagnosis
## diff lwr upr p adj
## Huntingtons-Amnesic 30 8.31523 51.68477 0.0080262
## Control-Amnesic 30 8.31523 51.68477 0.0080262
## Control-Huntingtons 0 -21.68477 21.68477 1.0000000

# Do one-way ANOVA for Classification Task
classification.aov<-aov(Y~Diagnosis,data=task.class)
print(summary(classification.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
## Diagnosis 2 4000 2000.0 11.22 0.00179 **
## Residuals 12 2138 178.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MS.diagnosis<-2000
F.classification<-MS.diagnosis/MS.w # Re-calculate F using MS.w
p.value.classification<-1-pf(F.classification,df1=3-1,df2=36)
print(p.value.classification)

## [1] 6.8072e-05

TukeyHSD(classification.aov)
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## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Diagnosis, data = task.class)
##
## $Diagnosis
## diff lwr upr p adj
## Huntingtons-Amnesic -20 -42.521995 2.521995 0.0839217
## Control-Amnesic 20 -2.521995 42.521995 0.0839217
## Control-Huntingtons 40 17.478005 62.521995 0.0012925

# Do one-way ANOVA for Grammar Task
grammar.aov<-aov(Y~Diagnosis,data=task.grammar)
print(summary(grammar.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
## Diagnosis 2 3250 1625 12.5 0.00116 **
## Residuals 12 1560 130
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MS.diagnosis<-1625
F.grammar<-MS.diagnosis/MS.w # Re-calculate F using MS.w
p.value.grammar<-1-pf(F.grammar,df1=3-1,df2=36)
print(p.value.grammar)

## [1] 0.0002906327

TukeyHSD(grammar.aov)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Diagnosis, data = task.grammar)
##
## $Diagnosis
## diff lwr upr p adj
## Huntingtons-Amnesic -25 -44.238238 -5.761762 0.0119893
## Control-Amnesic 10 -9.238238 29.238238 0.3780273
## Control-Huntingtons 35 15.761762 54.238238 0.0010645

Approach #2 - Linear Contrasts

However, given our a priori hypotheses about how each patient group ought to perform on tasks of implicit
and explicit memory, a better approach would be to use planned contrasts to specifically evaluate whether
the pattern of means is consistent with our hypotheses. Note that here too we should use the MSW from
the full 3 X 3 factorial ANOVA as it pools the error variance over all 9 groups (I’m assuming equal variance
across groups here).

For the Recognition task, we might choose the weights (-2, 1, 1) to capture the hypothesis that Amnesics in
particular should perform poorly on tests of explicit memory.
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For the Classification task, we might choose the weights, (1, -2, 1) to capture the hypothesis that Huntingtons
patients, but not Amnesics or Controls are impaired on implicit memory tasks.

Given that the Grammar task also measures implicit memory, we can use the same weights as for the
Classification task.

recog.weights<-c(-2,1,1) # Amnesics, Huntingtons, Controls
classification.weights<-c(1,-2,1) # Amnesics, Huntingtons, Controls
grammar.weights<-c(1,-2,1) # Amnesics, Huntingtons, Controls

# Get condition means for each Task separately
recog.means<-patient.descriptives %>% filter(Task=="Recognition") %>% ungroup() %>% select(Mean)

classification.means<-patient.descriptives %>% filter(Task=="Classification") %>%
ungroup() %>% select(Mean)

grammar.means<-patient.descriptives %>% filter(Task=="Grammar") %>% ungroup() %>% select(Mean)

Now that we have the weights for each Task as well as the means, let’s do three linear contrasts:

n.pergroup<-5

# Contrast for Recognition Task
recog.psi<-sum(recog.weights*recog.means$Mean)
recog.F<-((recog.psi^2)/(sum((recog.weights^2)/n.pergroup)))/MS.w
recog.p.value<-1-pf(recog.F,df1=1,df2=45-3)
print(recog.p.value)

## [1] 8.238931e-05

# Contrast for Classification Task
classification.psi<-sum(classification.weights*classification.means$Mean)
classification.F<-((classification.psi^2)/(sum((classification.weights^2)/n.pergroup)))/MS.w
classification.p.value<-1-pf(classification.F,df1=1,df2=45-3)
print(classification.p.value)

## [1] 8.238931e-05

# Contrast for Grammar Task
grammar.psi<-sum(grammar.weights*grammar.means$Mean)
grammar.F<-((grammar.psi^2)/(sum((grammar.weights^2)/n.pergroup)))/MS.w
grammar.p.value<-1-pf(grammar.F,df1=1,df2=45-3)
print(grammar.p.value)

## [1] 8.238931e-05

All three contrasts are significant, which supports our hypotheses concerning the relationship between Am-
nesia, Huntingtons, and implicit/explicit memory.

Note that I did not use any corrections here to maintain αF W = .05. As I alluded to in the previous lab
tutorial, use of the Bonferroni adjustment with planned contrasts is somewhat controversial. Because I did
the omnibus test first and found a significant interaction, my own approach would be to go ahead with the
planned contrasts without using a correction.
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Effect size and Power

The appropriate effect size measure for a two-way Factorial ANOVA is partial eta-squared, η2
p. Note that

your MDK textbook refers to η2
p as R2

partial. When there are two IVs, η2
p can be calculated for each IV as

well as the interaction term. Let’s use the data from MDK Chapter 7 Table 1 to calculate η2
p for the main

effects of Drug and BioFeedback. Let’s print the output from the ANOVA to get the SS for each term.

print(summary(sbp.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 1 720 720.0 11.52 0.00371 **
## BioFeedback 1 500 500.0 8.00 0.01211 *
## Drug:BioFeedback 1 320 320.0 5.12 0.03792 *
## Residuals 16 1000 62.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s store these SS values as new variables, as we’ll need them shortly.

SS.drug<-720
SS.biofeedback<-500
SS.int<-320
SS.within<-1000

The general formula for η2
p in a between-subjects factorial design is:

η2
p = SSEffect

SSEffect + SSW ithin

For the main effect of Drug, η2
p is:

η2
p = SSDrug

SSDrug + SSW ithin

p.etasq.drug<-SS.drug/(SS.drug + SS.within)
print(round(p.etasq.drug,digits=2))

## [1] 0.42

We can also calculate η2
p for the main effect of BioFeedback as well as the Drug:BioFeedback interaction

similarly:

p.etasq.biofeedback<-SS.biofeedback/(SS.biofeedback + SS.within)
print(round(p.etasq.biofeedback,digits=2))

## [1] 0.33

p.etasq.int<-SS.int/(SS.int + SS.within)
print(round(p.etasq.int,digits=2))
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## [1] 0.24

These are very large effects!

As you might have noticed by now, η2
p is closely related to η2, but the composition of the denominator

differs. In a two-factor design, η2
p for Factor A is calculated by expressing SSA as a proportion of the sum of

SSA and SSW ithin, whereas for η2, SSA is expressed as a proportion of the total variability, SST otal, which
includes the variability associated with SSB and the interaction between A and B SSAB . Therefore, when
more than one IV is present, η2

p will always be larger than η2.

Like η2, we can re-express η2
p as Cohen’s f, which we’ll need for power and sample size calculations.

Cohen′sf =

√
η2

p

1 − η2
p

We can use Cohen’s f values to conduct a power analysis in which we can estimate the number of participants
needed to reach a power = .80. Previously, we used the pwr.anova.test function when analyzing a one-way
between-subjects ANOVA. Here, we’ll use the pwr.f2.test function, which allows us to calculate power or
n for any F -test.

Suppose we have a two-factor design: factors A and B have three and two levels (3 X 2 design), respectively.
Also, let’s assume that the effect sizes for the main effects of A and B are f = 0.1 (i.e., small) and f = 0.25
(i.e., medium), respectively. The following commands calculates the n needed to detect a main effect of B
when α = 05.

library(pwr) # make sure the pwr package is installed first - install.packages("pwr")

pwr.f2.test(u=2-1,f2=(.25^2),power=.80,sig.level=.05) # note that the f2 argument is squared (f^2)

##
## Multiple regression power calculation
##
## u = 1
## v = 125.5312
## f2 = 0.0625
## sig.level = 0.05
## power = 0.8

The arguments u and v correspond to the degrees of freedom (df ) in the numerator and the denominator
of the F -test, respectively. The df in the denominator = (num levels A) X (num levels B) X (n - 1), where
n refers to the number of subjects in each condition. If we know the df, we can re-arrange the equation to
solve for n. In this example, n = 1 + [126/(3 X 2)] = 22.

In other words, in a 3 X 2 design, we would need 22 subjects per condition to detect a main effect of factor
B with an effect size, f = .25, and power = .80.

Unbalanced (Non-Orthogonal) Designs

To this point, we have only discussed designs where there was an equal n in each group. When n’s are unequal,
things become considerably more complicated. Recall that when n’s are equal, a two-factor factorial ANOVA
is really just a set of three orthogonal contrasts. With unequal n’s, however, this no longer holds. That is,
the contrasts are no longer orthogonal. This raises serious problems in interpreting the main effects in such
designs, because they are no longer independent.
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The solution is to use what is known as Type III sums-of-squares together with sum-to-zero coding (which
we’ve been doing all along) in order to interpret each main effect independently. This is a complicated issue
conceptually, but the implementation in R is fairly straightforward. To use Type III SS rather than Type
I SS (which is the default in R), we need to use the lm command in conjunction with the drop1 function.
The following example will illustrate how to do this in R using the data from MDK Chapter 7 Table 15 that
lists salaries (in thousands) of males and females with and without college degrees.

salary.data<-read.table(file="Ch7T15.txt",header=T)
str(salary.data)

## 'data.frame': 22 obs. of 3 variables:
## $ Sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 1 1 ...
## $ Education: Factor w/ 2 levels "degree","nodegree": 1 1 1 1 1 1 1 1 2 2 ...
## $ Salary : int 24 26 25 24 27 24 27 23 15 17 ...

Let’s get the number of participants in each condition along with the means:

salary.descriptives<-salary.data %>% group_by(Sex,Education) %>%
summarize(Mean=mean(Salary),n=length(Salary))

print(salary.descriptives)

## # A tibble: 4 x 4
## # Groups: Sex [?]
## Sex Education Mean n
## <fct> <fct> <dbl> <int>
## 1 female degree 25 8
## 2 female nodegree 17 4
## 3 male degree 27 3
## 4 male nodegree 20 7

You can see that each cell does not have the same n. To analyze these data, we first need to make sure that
we’re using sum-to-zero effect coding using the options command. Next, we use the lm command to build
the full model. Then we evaluate the full model against the appropriate restricted models using the drop1
function:

options(contrasts=c("contr.sum","contr.poly")) # Set sum-to-zero effect coding

salary.lm<-lm(Salary~Sex*Education,data=salary.data)
drop1(salary.lm,.~.,test="F")

## Single term deletions
##
## Model:
## Salary ~ Sex * Education
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 50.000 26.062
## Sex 1 29.371 79.371 34.228 10.5734 0.004429 **
## Education 1 264.336 314.336 64.507 95.1608 1.306e-08 ***
## Sex:Education 1 1.175 51.175 24.573 0.4229 0.523690
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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