
Lab Tutorial 8: Random Effects & Repeated-Measures
ANOVA

Chris M. Fiacconi

In all designs covered so far in this course, we have examined fixed-effect factors. The levels of a factor are
said to be fixed when subsequent replications of the study would include the same fixed levels. If I were
conducting a drug study with three different levels corresponding to different dose amounts (e.g., 100mg,
200mg, 300mg), dose would be a fixed factor if I were only interested in how those particular dose amounts
affected behaviour. So if I were to run a replication, I would use those same levels.

Random Factors

However, some factors in an experiment are better thought of as random-effect factors, meaning that upon
subsequent replications, different levels of the factor would be chosen. The levels of such factors can be
thought of as representing a sample from a larger population of possible levels. For example, if I wanted to
test whether a computer-based training program or a paper-and-pencil package of materials better prepared
high school students for college, I could randomly select 4 different high schools from the region and assign
students from each school to either the computer or paper-and-pencil training programs and then examine
ACT scores for both programs. In this case, the Program factor would be fixed because I’m interested in
whether there is a difference between those two particular training methods. However, we could think of the
particular high schools chosen as a random factor because if I were to run the study again, I might select
different high schools. Designs with both a fixed and a random factor are sometimes known as mixed-designs.

Analysis of mixed-designs is similar to that of designs consisting of only fixed factors, but there are some
important differences in the way we conceptualize random factors, and in how we evaluate the associated
null hypothesis, which itself is slightly different. Recall that the null hypothesis for a fixed factor is that all
αj ’s = 0, and that the alternative hypothesis is that at least one αj 6= 0, where αj represents the the effect
associated with being in level j. However, with random factors, we’re not so much interested in whether
there is a difference among the particular levels chosen (e.g., school 1 vs. school 2), but rather, whether in
general there are differences among all possible levels. The notation for the null and alternative hypotheses
is thus as follows:

H0 : σ2
α = 0

Ha : σ2
α > 0

Note that for random factors, this change in notation means that our results can generalize to all possible
levels of the factor, even those that we did not choose in this particular study. In contrast, for fixed factors,
our results allow us to draw conclusions that are restricted to only those levels that were selected in the study.
Going back to our example, if Program is treated as a fixed factor, any difference that we observe between
the two programs would not allow us to draw conclusions to other training programs that were not directly
investigated in this study. However, because School is treated as a random factor and the schools themselves
were selected randomly, any systematic differences in ACT scores between these schools are indicative of the
differences that would be seen if a different sample of schools were chosen.

Model Comparisons for Mixed-Designs

Since designs that include only a single random factor are seldom used in the behavioural sciences (and as it
turns out, are analyzed exactly the same way as a single fixed factor design), we will not cover the analysis
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of such designs in this course. Mixed-designs are, however, fairly common and so I will demonstrate how to
analyze such a design using the example described above (see MDK Table 10.5).

Before we begin, it is important to understand that the effect of the fixed-factor in a mixed-design is evaluated
using a different error term than if the design consisted of two fixed-factors (see Lab Tutorial 6 on factorial
ANOVA). In all designs we’ve covered so far, we’ve been using MSW , as our error term for each effect in the
model. However, in a mixed-design with Factor A fixed and Factor B random, the appropriate error term
for evaluating the effect of the fixed-factor is not MSW . Rather, the appropriate error term in this case is
actually MSAB , or the A × B interaction variance. Because B is a random factor, the A × B interaction
variance can artificially inflate MSA, making it easier to reject the null hypothesis that all αj ’s = 0.

The models being compared to evaluate the effect of a fixed factor in a mixed-design look very similar to
those we’ve seen before, with the following full model

Yij = µ+ αj + βk + (αβ)jk + εij

being compared with the following restricted model

Yij = µ+ βk + (αβ)jk + εij

You might think that the appropriate method to calculate the F -statistic evaluating the main effect of
fixed-factor A would be:

F = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA
MSW

but it is not. In this case, MSA has the following expected mean-square value:

(ER − EF )/(dfR − dfF ) = MSA = σ2
ε + nσ2

(αβ) + bn
∑
j

α2
j/(a− 1)

whereas the expected mean-square value for MSW is:

EF /dfF = MSW = σ2
ε

.

Therefore, the resulting F -statistic for evaluating the main effect of fixed-factor A will be inflated because
the numerator incorporates variability not only from bn

∑
j α

2
j/(a − 1) and σ2

ε , but also from nσ2
(αβ). This

is because when a random factor consists of only a sample of the population of levels, the (αβ)jk term will
sum-to-zero only across the levels of the fixed factor. This means that MSA will be influenced by interaction
variance as MSA and MSAB are no longer orthogonal.

In other words, this F -test is biased and will tend to inflate the Type I Error rate. To properly evaluate the
main effect of fixed-factor A, we need to choose a denominator that differs in only one variance component.
The correct choice is MSA×B , which has the following expected mean-square value:

MSA×B = σ2
ε + nσ2

(αβ)

.

Therefore, the appropriate F -statistic is now:

F = (ER − EF )/(dfR − dfF )
MSAB

= MSA
MSA×B

Despite this change in the composition of the F -statistic for the main effect of fixed-factor A, the main effect
of random-factor B and the A × B interaction are assessed using the familiar MSW error term.

For the main effect of random-factor B, we would compare the following full and restricted models:

Yij = µ+ αj + βk + (αβ)jk + εij
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Yij = µ+ αj + (αβ)jk + εij

The appropriate F -statistic to evaluate the main effect of random-factor B is then:

F = (ER − EF )/(dfR − dfF )
EF /dfF

= MSB
MSW

Finally, for the the A × B interaction, we would compare the following full and restricted models:

Yij = µ+ αj + βk + (αβ)jk + εij

Yij = µ+ αj + βk + εij

The appropriate F -statistic to evaluate the A × B interaction is then:

F = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA×B

MSW

Analyzing Mixed-Designs in R

Example #1

Let’s now conduct the appropriate analyses for the example I described above using R. This example is taken
from your textbook (MDK Table 10.5).

library(tidyverse)
act.data<-read.table(file="CH10T5.txt",header=T) # Load in data file
str(act.data)

## 'data.frame': 40 obs. of 3 variables:
## $ Program: Factor w/ 2 levels "Computer","Pencil": 1 1 1 1 1 1 1 1 1 1 ...
## $ School : int 1 1 1 1 1 2 2 2 2 2 ...
## $ ACT : int 28 26 26 23 17 26 26 25 21 17 ...

act.data$School<-as.factor(act.data$School) # Make sure School is treated as a factor

# Get means for each condition
cell.means<-act.data %>% group_by(Program,School) %>% summarize(Mean=mean(ACT))

# Transform cell.means dataframe into matrix for plotting
cell.means<-xtabs(Mean~Program+School,data=cell.means)
print(cell.means)

## School
## Program 1 2 3 4
## Computer 24 23 19 18
## Pencil 26 29 25 28

# Make a bar graph
means.bp<-barplot(cell.means,beside=TRUE,las=1,ylab="ACT Scores",xlab="High School",

ylim=c(0,40),legend.text=c("Computer","Pencil"))

print(means.bp) # Print bar graph and x-coordinates of bars
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Figure 1: Plot of cell means from data taken from MDK Chapter 10 Table 5

## [,1] [,2] [,3] [,4]
## [1,] 1.5 4.5 7.5 10.5
## [2,] 2.5 5.5 8.5 11.5

# Compute +-1 SEM Error Bars
all.SEM<-act.data %>% group_by(Program,School) %>%

summarize(SEM=sd(ACT)/sqrt(length(ACT))) # Calculate SEM for each condition

SEM.matrix<-xtabs(SEM~Program+School,data=all.SEM) # Transform SEM data.frame into matrix for plotting

# Draw Error Bars
arrows(x0=means.bp,y0=cell.means,x1=means.bp,y1=cell.means+SEM.matrix,

angle=90,length=.05,lwd=2) # Draw upper half

arrows(x0=means.bp,y0=cell.means,x1=means.bp,y1=cell.means-SEM.matrix,
angle=90,length=.05,lwd=2) # Draw lower half

If we were to (incorrectly I might add) treat School as a fixed-factor, then we could simply go ahead and
conduct a 2 X 4 factorial ANOVA as we did in Lab Tutorial 6:

options(contrasts=c("contr.sum","contr.poly")) # Set sum-to-zero contrasts

school.fixed.aov<-aov(ACT~Program*School,data=act.data)
print(summary(school.fixed.aov))

## Df Sum Sq Mean Sq F value Pr(>F)
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## Program 1 360 360.0 19.931 9.35e-05 ***
## School 3 100 33.3 1.845 0.159
## Program:School 3 80 26.7 1.476 0.240
## Residuals 32 578 18.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From these results it appears as though there is a highly significant effect of Program, with the pencil-and-
paper students outperforming the computer-based training students.

Note however, that this analysis uses MSW to evaluate the main effect of Program, which is inappropriate
because School is a random-factor, not a fixed-factor. Instead, we should be usingMSAB in the denominator
of our F -statistic when evaluating the main effect of Program:

MS.program<-360
MS.interaction<-26.7

program.F.correct<-MS.program/MS.interaction
print(program.F.correct)

## [1] 13.48315

p.value<-1-pf(program.F.correct,df1=1,df2=3)
print(p.value)

## [1] 0.03495279

So after treating School as a random effect and re-calculating F, we see that there is still a significant effect
of Program, F (1, 3) = 13.48, p = .035.

From comparing the first analysis with the second, it is clear that by using MSW as our error term when
evaluating the effect of Program, there was an obvious inflation of our F -statistic, yielding a p-value that
was far smaller than it should have been.

Another point to note here is that, because there were only 4 schools involved in this study, there were only
3 degrees of freedom in the denominator. In general, so few degrees of freedom will reduce our power to
detect a true effect. So, in this case, we could substantially increase our power by selecting a larger number
of schools to participate in this study.

One-Way Repeated-Measures ANOVA

Our preceeding discussion regarding random factors is important when we consider within-subject or repeated-
measures designs in which each subject in our study receives all levels of the experimental manipulation.
Indeed, a standard one-way repeated-measures design can be thought of as a particular kind of mixed-design,
with the primary factor of interest being fixed, and subjects as a random factor. Importantly, testing each
subject in all conditions means that the Subject factor is crossed with the primary manipulation of interest,
allowing us to measure the variation in our dependent measure that can be attributed to our fixed-factor, and
the random-factor Subject. Note that it is impossible to disentangle these different sources of variability in
a one-way fixed-factor between subjects design because each subject is nested within a particular condition.
Therefore, we have no way of isolating variability that is due to individual subject-level differences vs. random
error variability.
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Let’s formalize this idea by constructing the models that are compared in a one-way repeated-measures
design. You can conceive of the full model as:

Yij = µ+ αj + πi + (απ)ij + εij

where µ is the grand mean of all scores on the DV, αj is the effect of being in condition j, πi is the effect
associated with the ith subject (or participant), (απ)ij is the interaction between the ith subject in condition
j, and εij is the prediction error associated with subject i in condition j.

However, before we proceed it is necessary to recognize that because each subject contributes only one
mean to each condition in a repeated-measures design, it is not possible disentangle the variability in our
dependent measure that is associated with the interaction between the fixed-factor and Subjects from random
error variability. In other words, the interaction variance is the error variance in such a design, and as a
consequence, we can remove the (απ)ij parameters from our model as they get incorporated into the error
term (i.e., residuals). Therefore, our new full model becomes:

Yij = µ+ αj + πi + εij

where each term is calculated as follows:
µ = Ȳ..

αj = Ȳ.j − Ȳ..
πi = Ȳi. − Ȳ..

εij = Yij − (Ȳ.j + Ȳi. − Ȳ..)

The null hypothesis tested here is the same as we’ve seen before for a fixed-factor A:

H0 : α1 = α2 = ... = αj = 0

Similarly, the alternative hypothesis is that at least one αj 6= 0.

To test this null hypothesis, the full model would be compared to the following restricted model:

Yij = µ+ πi + εij

using the following F -statistic:
F = (ER − EF )/(dfR − dfF )

EF /dfF

where
(dfR − dfF ) = a− 1

dfF = (n− 1)(a− 1)

Note that according to our previous discussion on evaluating the effect of a fixed-factor when a random-factor
is included in the same design, we could also express the F -statistic for the effect of the fixed-factor A as:

F = MSA
MSA×S

Remember that the Subject factor is treated as a random-factor here because we randomly selected only a
subset of the full population to participate in the study. If we were to replicate this study, we would not
select the same subjects.

You might now be wondering how we test for a significant effect of Subject. It turns out that because
each subject contributes only one mean to each condition, such a test is not possible because there is no
appropriate error term to test for this effect. This isn’t really to much of a problem because we’re not usually
interested in knowing that there are in fact overall differences between individuals.

6



Months30 Months36 Months42 Months48

90

100

110

120

130

Age (months)

C
og

ni
tiv

e 
A

bi
lit

y

Figure 2: Boxplot of data take from MDK Chapter 11 Table 5

Example #2

Let’s illustrate how to conduct a one-way repeated-measures ANOVA in R using the data from MDK Table
11.5. In this example, 12 children are measured at 4 different ages (30-, 36-, 42-, 48-months) on their
cognitive abilities. The researcher wants to examine whether their cognitive performance changes with age.

age.data<-read.table(file="Ch11T5.txt",header=T)
str(age.data)

## 'data.frame': 48 obs. of 3 variables:
## $ Age : Factor w/ 4 levels "Months30","Months36",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Score : int 108 103 96 84 118 110 129 90 84 96 ...
## $ Subject: int 1 2 3 4 5 6 7 8 9 10 ...

# Boxplot of age.data
boxplot(Score~Age,data=age.data,las=1,ylab="Cognitive Ability",xlab="Age (months)")

# Get descriptives for each Age group
age.descriptives<-age.data %>% group_by(Age) %>% summarize(Mean=mean(Score),S.Dev=sd(Score))
print(age.descriptives)

## # A tibble: 4 x 3
## Age Mean S.Dev
## <fct> <dbl> <dbl>
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## 1 Months30 103 13.7
## 2 Months36 107 14.2
## 3 Months42 110 13.3
## 4 Months48 112 14.8

Let’s now perform a repeated-measures ANOVA in R using the basic aov command:

age.data$Subject<-as.factor(age.data$Subject) # Ensure Subject is treated as a factor!

age.aov<-aov(Score~Age+Error(Subject/Age),data=age.data) # Perform RM-ANOVA
print(summary(age.aov))

##
## Error: Subject
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 11 6624 602.2
##
## Error: Subject:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 3 552 184.00 3.027 0.0432 *
## Residuals 33 2006 60.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There appears to be a significant effect of Age, F (3, 33) = 3.03, p = .043. Notice that within the aov
command I specified the appropriate error term, MSA×S , using the Error argument. This tells R that we’re
performing a repeated-measures ANOVA, and that Age is manipulated within-subjects.

Note that although we can’t test whether there is a significant effect of Subject, the sums-of-squares for
Subject (SSSubject = 6624) can still be calculated and are provided in the top portion of the output from
the aov command.

Assumption of Sphericity

In order for the previous analysis to be correct, we have to assume that our data conform to the sphericity
assumption. I won’t go into too much detail here, but I want to explain the concept of sphericity, how it
arises in repeated-measures designs with three or more levels, and what to do if the assumption of sphericity
is violated.

Because we are measuring the same subject in multiple conditions, the scores are often correlated across
conditions. In order for RM-ANOVA to produce valid results, the variance of the difference scores for all pairs
of conditions must be equal. This assumption, known as the sphericity assumption, will necessarily be true
when the variances across conditions are equal, and the covariances between all pairs of conditions are equal.
When the data conform to these criteria, the sphericity assumption is upheld. IMPORTANT: When
there are only two conditions, we don’t have to worry, as only one set of difference scores can
be computed and therefore sphericity cannot be violated. When there are three or more conditions,
however, it is possible that the variances of the pairwise difference scores between conditions are not equal
and violations of the sphericity assumption can occur.

Fortunately, we can explicitly test whether the sphericity assumption holds usingMauchley’s Test for Spheric-
ity. This test is automatically included in the output from the ezANOVA function, which can be found in
the package ez. If this test is significant, then the sphericity assumption has been violated, and we need to
introduce corrections to account for this violation (some statisticians argue you should always perform the
corrections regardless of whether Mauchley’s test is signficant).
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There are two different correction procedures, with one (Greenhouse-Geisser, or ε̂) being slighly more con-
servative than the other (Huynh-Feldt, or ε̃). Luckily, each correction factor along with its associated
p-adjustment is also included in the output of the ezANOVA command.

Let’s redo the last analysis using the ezANOVA command and set the detailed argument to TRUE so that
we can evaluate whether the sphericity assumption is violated and obtain all SS values, the appropriate
correction factors (ε̂ and ε̃) and associated p-values.

library(ez) # Ensure 'ez' is installed first - install.packages("ez") (Make sure you're online)

age.ezAOV<-ezANOVA(data=age.data,dv=Score,wid=Subject,within=Age,between=NULL,detailed=TRUE)
print(age.ezAOV)

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 (Intercept) 1 11 559872 6624 929.739130 5.586316e-12 * 0.98481975
## 2 Age 3 33 552 2006 3.026919 4.321863e-02 * 0.06011762
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 Age 0.2426472 0.01771762 *
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 Age 0.6095445 0.0747874 0.7248502 0.06353773

In this case Mauchley’s test is significant (p = .018). As a consequence, we need use use either the ε̂ or ε̃
correction factors to adjust the p-value associated with the effect of Age. My own preference is to use the
Huynh-Feldt (HF; ε̃) correction when this assumption is violated. Notably, the adjusted p-value associated
with the ε̃ correction is .064, and the effect of Age is no longer significant after adjusting for the apparent
violation of sphericity. This example illustrates that violations of sphericity left uncorrected can yield biased
results that increase the probability of a Type I Error.

Effect Size

There are a still a couple of things we need to figure out. Although our obtained adjusted p-value does not
allow us to reject the null hypothesis that the condition means for Age are equal, we can nonetheless still
calculate the effect size for Age. In other words, we would like to know “how much of an effect did Age
have?” For a one-way RM-ANOVA, we can again calculate eta-squared (η2) with formula:

η2 = SSA
SSA + SSSubject + SSAS

SS.age<-age.ezAOV$ANOVA$SSn[2] # Get SS Age from ezANOVA
SS.subject<-6624 # Get SS Subject from original ANOVA (aov)
SS.interaction<-age.ezAOV$ANOVA$SSd[2] # Get SS A x S from ezANOVA

# Calculate eta-squared
eta.sq<-SS.age/(SS.age+SS.subject+SS.interaction)
print(round(eta.sq,digits=2))

## [1] 0.06
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The obtained η2 value associated with Age is 0.06, which means that Age accounts for ~ 6% of the total
variability among exam scores. This would be considered a relatively small effect. Also note that the
denominator of η2 contains variability due to overall subject-level differences (SSSubject) even though this
variability was not included in the F -statistic used to evaluate the effect of Age. When we talk about effect
size in a one-way repeated measures context, however, it is usually most informative to express the amount
of variability associated with our manipulation (i.e., Age) as a proportion of the total variability in our
dependent measure. Therefore, SSSubject is included in the denominator when calculating η2.

As in the case of a between-subjects ANOVA, we can use this η2 value to calculate Cohen’s f, which will be
useful for power and sample size calculations:

f =

√
η2

1− η2

cohens.f<-sqrt(eta.sq/(1-eta.sq))
print(round(cohens.f,digits=2))

## [1] 0.25

Comparisons Among Individual Means

As we’ve discussed throughout the course, a significant omnibus one-way ANOVA indicates that there likely
exists a difference among the condition means included in your study, but does not indicate specifically which
such means are different from each other. Therefore, it is necessary to perform follow-up tests to directly
compare the individual means.

As we’ve done previously, we can use linear contrasts here to test hypotheses about patterns of condition
means, either with planned contrasts or post-hoc contrasts. You could also perform pairwise comparisons
here, but it is important that you use a separate error term for each comparison rather than the pooled
MSA×S . Such comparisons could be performed using the pairwise.t.test function.

In the present example, given that cognitive ability could reasonably be expected to increase from 30-48
months of age, one might plan in advance to test a contrast that examines whether there exists a linear
trend among condition means using the contrast weights (-1.5, -0.5, 0.5, 1.5). The procedure for performing
a contrast for a repeated-measures factor is slightly different from that used for between-subject factors.

1) We need to transform our data from long to wide format using the spread command from the tidyverse
package.

age.data.wide<-spread(age.data,key=Age,value=Score) # Convert dataframe from long to wide format
age.data.wide<-age.data.wide[,-1] # Remove Subject column
age.data.wide<-as.matrix(age.data.wide) # Convert from dataframe to matrix

2) We need to compute a composite score for each subject that reflects the weighted sum of the condition
means for individual i:

ψi =
a∑
j=1

cj Ȳij

This computation is done using matrix multiplication with the %*% operator:

c.weights<-c(-1.5,-0.5,0.5,1.5)
comp.scores<-age.data.wide%*%c.weights # Note that the data matrix goes first here!!
print(comp.scores)
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## [,1]
## [1,] 28
## [2,] 50
## [3,] 16
## [4,] 26
## [5,] -3
## [6,] -34
## [7,] -4
## [8,] 43
## [9,] 4
## [10,] 15
## [11,] 6
## [12,] 33

3) We can test whether these composite scores differ from 0 using a one-sample t-test:

t.test(comp.scores)

##
## One Sample t-test
##
## data: comp.scores
## t = 2.2414, df = 11, p-value = 0.04659
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.2701827 29.7298173
## sample estimates:
## mean of x
## 15

The results suggest that there is a significant linear trend, t(11) = 2.24, p = .047, with cognitive ability
increasing with age from 30-48 months.

Since this was a planned contrast, no adjustments for Type I Error inflation are necessary here.

11


	Random Factors
	Model Comparisons for Mixed-Designs
	Analyzing Mixed-Designs in R
	Example #1

	One-Way Repeated-Measures ANOVA
	Example #2
	Assumption of Sphericity
	Effect Size
	Comparisons Among Individual Means


