
Lab Tutorial 9: Repeated-Measures Factorial ANOVA
& Split-Plot ANOVA

Chris M. Fiacconi

Overview

To this point we have discussed analysis of designs that include two (or more) crossed independent variables
where all variables were manipulated between-subjects. As you might imagine, it is also possible to manip-
ulate two (or more) independent variables in a fully repeated-measures design, where every participant is
tested in all possible cells of the design. In fact, such designs are extremely commonplace in human (and
animal) cognition research. In this lab tutorial, we will discuss analysis techniques for repeated-measures
factorial designs, as well as for designs in which at least one of the independent variables is manipulated
between-subjects. These latter designs consist of a mix of between- and within-subject factors and are known
as split-plot or mixed designs. As you’ll see, we can apply many of the principles already discussed in the
context of between-subjects factorial designs and one-way repeated measures designs in our analysis of the
present experimental designs.

Repeated-Measures Factorial ANOVA

Model Comparisons

Recall that in our discussion of between-subject factorial ANOVA, we compared a full model with a series
of restricted models to evaluate the main effects of factors A, B, and their interaction. The full model had
the following form:

Yijk = µ+ αj + βk + (αβ)jk + εijk

where µ again represents the grand mean, αj represents the effect of being in the jth level of Factor A, βk
represents the effect of being in the kth level of Factor B, (αβ)jk represents the interaction effect of being
in level j of Factor A and level k of Factor B in combination with one another. This model captures the
fact that we can examine the main effects of factor A (αj ’s) and factor B (βk’s), along with their interaction
(αβjk’s).

Similarly, for a repeated-measures design with one independent variable we compared a full model with a
single restricted model to evaluate the main effect of factor A. The full model had the following form:

Yij = µ+ αj + πi + (απ)ij + εij

where µ is the grand mean, αj is the effect of being in condition j, πi is the effect associated with the
ith subject (or participant), (απ)ij is the interaction between the ith subject in condition j, and εij is the
prediction error associated with subject i in condition j.

For a two-way repeated-measures factorial design, we essentially combine the two models shown above to
create the following full model:

Yijk = µ+ αj + βk + πi + (αβ)jk + (απ)ji + (βπ)ki + (αβπ)jki + εijk

where where µ is the grand mean, αj is the effect of being in condition j, πi is the effect associated with the
ith subject (or participant), (απ)ij is the interaction between the ith subject in condition j, (αβ)jk represents
the interaction effect of being in level j of A and level k of B, (απ)ji represents the interaction effect for the
ith subject in condition j, (βπ)ki represents the interaction effect for the ith subject in condition k, (αβπ)jki
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represents the three-way interaction effect for the ith subject in the jth level of A, and kth level of B, and
εij is the prediction error associated with subject i in condition jk. Note that α, β, and αβ are fixed effects
whereas π and all the interactions with π are random effects.

As was the case in a two-way between-subjects factorial design, we can still evaluate the main effects of A, B
and the A x B interaction, but the models being compared in the evaluation of each effect differ somewhat
due to the repeated-measures nature of the design. Once again, we can evaluate the fixed effects in the model
by comparing the full model to a restricted model that omits the parameters associated with the effect being
tested. As per usual, these models can be compared using the (hopefully familiar by now) formula:

F = (ER − EF )/(dfR − dfF )
EF /dfF

When testing the the main effect of A the F -statistic has the following form:

FA = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA
MSA×S

and the df are calculated as follows:
(dfR − dfF ) = a− 1

dfF = (a− 1)(n− 1)

Similarly, when testing the the main effect of B the F -statistic has the following form:

FB = (ER − EF )/(dfR − dfF )
EF /dfF

= MSB
MSB×S

and the df are calculated as follows:
(dfR − dfF ) = b− 1

dfF = (b− 1)(n− 1)

For the A x B interaction, the the F -statistic has the following form:

FA×B = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA×B

MSA×B×S

and the df are:
(dfR − dfF ) = (a− 1)(b− 1)

dfF = (a− 1)(b− 1)(n− 1)

Note that similar to a one-way repeated-measures ANOVA, the error term used to evaluate each effect (e.g.,
A main effect) consists of the corresponding effect × subjects interaction (i.e., A× S). Recall that the need
for this error term stems from the fact that MSA is influenced by the variance associated with the A × S
interaction because S is a random effect (see Lab Tutorial 8). By using MSA×S as the error term in our
F -statistic, we effectively cancel out A×S interaction variance in both the numerator and the denominator,
thus isolating the variance that is solely attributable to A. The same basic logic holds when evaluating the
main effect of B and the A×B interaction.
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Example #1

A perceptual psychologist is interested in how the visual system detects target stimuli amongst visual noise.
Participants are told to identify a letter as either a ‘T’ or an ‘I’ while reaction time (RT) is recorded on each
trial. On half of the trials, the target letter is presented clearly on its own, and on the other half of trials it
is presented embedded in white visual noise. Moreover, on a third of the trials in both conditions, the target
stimulus can appear at 0, 4, or 8 degrees of visual angle. Thus, we have a design with two crossed factors,
the first of which is Noise (present, absent) and the second of which is Angle (0-, 4-, 8-degrees) yielding a 2 x
3 factorial design. Both factors are manipulated within-subjects meaning that we have a repeated-measures
factorial design. Let’s load in the data file adapted from MDK Chapter 12 Table 1.

options(contrasts=c("contr.sum","contr.poly")) # Set sum-to-zero contrasts

angle.data<-read.table(file="Ch12T1.txt",header=T)
head(angle.data)

## Absent0 Absent4 Absent8 Present0 Present4 Present8
## 1 420 420 480 480 600 780
## 2 420 480 480 360 480 600
## 3 480 480 540 660 780 780
## 4 420 540 540 480 780 900
## 5 540 660 540 480 660 720
## 6 360 420 360 360 480 540

Notice that the data are in wide format which is less than ideal for performing our analyses. Let’s first
convert the data to long format using the gather and separate functions from the dplyr package within
tidyverse.

library(tidyverse)

angle.data$Subject<-as.factor(1:nrow(angle.data)) # add Subject ID column to angle.data
angle.long<-gather(data=angle.data,key=Noise.Angle,value=RT,-Subject) # Gather columns except Subject
head(angle.long)

## Subject Noise.Angle RT
## 1 1 Absent0 420
## 2 2 Absent0 420
## 3 3 Absent0 480
## 4 4 Absent0 420
## 5 5 Absent0 540
## 6 6 Absent0 360

# Break up Noise.Angle column into 2 separate columns
angle.long<-separate(angle.long,col=Noise.Angle,into=c("Noise","Angle"),sep=-1)

angle.long$Noise<-as.factor(angle.long$Noise) # Ensure Noise is treated as a factor!!
angle.long$Angle<-as.factor(angle.long$Angle) # Ensure Angle is treated as a factor!!

angle.long<-arrange(angle.long,Subject,Noise,Angle) # Sort data by Subject, Noise, Angle

head(angle.long,n=12)
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## Subject Noise Angle RT
## 1 1 Absent 0 420
## 2 1 Absent 4 420
## 3 1 Absent 8 480
## 4 1 Present 0 480
## 5 1 Present 4 600
## 6 1 Present 8 780
## 7 2 Absent 0 420
## 8 2 Absent 4 480
## 9 2 Absent 8 480
## 10 2 Present 0 360
## 11 2 Present 4 480
## 12 2 Present 8 600

Now that the data are in long format, we’re ready to obtain descriptive statistics, plot the data, as well as
perform a 2 x 3 repeated-measures factorial ANOVA:

# Get condition means
angle.means<-angle.long %>% group_by(Noise,Angle) %>% summarize(Mean=mean(RT))
print(angle.means)

## # A tibble: 6 x 3
## # Groups: Noise [?]
## Noise Angle Mean
## <fct> <fct> <dbl>
## 1 Absent 0 462
## 2 Absent 4 510
## 3 Absent 8 528
## 4 Present 0 492
## 5 Present 4 660
## 6 Present 8 762

# Plot data
with(angle.long,interaction.plot(x.factor=Angle,trace.factor=Noise,response=RT,las=1,

cex=1.5,bty="n",type="b",pch=c(17,19),
xlab="Degrees of Visual Angle",ylab="RT (ms)"))

axis(side=1,at=c(1,2,3),labels=c("0","4","8")) # add in x-axis with ticks and labels

# Do RM ANOVA
angle.aov<-aov(RT~Noise*Angle+Error(Subject/(Noise*Angle)),data=angle.long)
print(summary(angle.aov))

##
## Error: Subject
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 292140 32460
##
## Error: Subject:Noise
## Df Sum Sq Mean Sq F value Pr(>F)
## Noise 1 285660 285660 33.77 0.000256 ***
## Residuals 9 76140 8460
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Figure 1: Plot depicting data taken from MDK Chapter 12 Table 1

## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Subject:Angle
## Df Sum Sq Mean Sq F value Pr(>F)
## Angle 2 289920 144960 40.72 2.09e-07 ***
## Residuals 18 64080 3560
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Subject:Noise:Angle
## Df Sum Sq Mean Sq F value Pr(>F)
## Noise:Angle 2 105120 52560 45.31 9.42e-08 ***
## Residuals 18 20880 1160
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Although it appears as though the main effects of Noise, F (1, 9) = 33.77, p < .001, Angle, F (1, 18) =
40.72, p < .001, and the Noise x Angle interaction, F (2, 18) = 45.31, p < .001, are all significant, before
drawing any conclusions we need to assess whether the sphericity assumption is upheld, particularly for the
effect of Angle (3+ levels) and the Noise x Angle interaction.

As we saw for one-way repeated-measures ANOVA, the aov function does not provide this information for
us. Thus, once again we’ll turn to the ezANOVA function in the ez package:

library(ez)
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# Notice the .() when specifying the within-subject factors
ezANOVA(data=angle.long,dv=RT,wid=Subject,within=.(Noise,Angle),detailed=TRUE)

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 9 19425660 292140 598.44917 1.526600e-09 *
## 2 Noise 1 9 285660 76140 33.76596 2.559737e-04 *
## 3 Angle 2 18 289920 64080 40.71910 2.086763e-07 *
## 4 Noise:Angle 2 18 105120 20880 45.31034 9.424093e-08 *
## ges
## 1 0.9771999
## 2 0.3866017
## 3 0.3901179
## 4 0.1882656
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 Angle 0.9601060 0.8497219
## 4 Noise:Angle 0.8937772 0.6381418
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF]
## 3 Angle 0.9616365 3.401705e-07 * 1.217564 2.086763e-07
## 4 Noise:Angle 0.9039771 3.453931e-07 * 1.117870 9.424093e-08
## p[HF]<.05
## 3 *
## 4 *

In this case, the sphericity assumption does not appear to be violated because Mauchley’s test is non-
significant. Therefore, we can assume sphericity and go ahead using the raw F- and p-values.

Further Investigation of Main Effects

Since there are only 2 levels of the Noise variable, the significant main effect tells us that RTs are longer
when noise is present vs. absent. However, given that Angle has 3 levels, a significant main effect does not
inform us as to which Angle condition means differ, necessitating follow-up tests.

One approach here would be to conduct a series of pairwise t-tests on the marginal means for the Angle
conditions. In principle there is nothing wrong with this approach, but it can unnecessarily inflate the
probability of committing a Type I Error since multiple t-tests would need to be conducted. Moreover, this
approach does not necessarily capture the overall pattern of mean differences in the data.

A better approach would be to perform a linear contrast to test a hypothesized pattern of means. In this
situation, we might want to test whether there is a significant linear trend such that RT increases linearly
with degrees of visual angle. Moreover, using this approach we can quantify how much variability among
condition means is due to this linear trend. Such analyses present an informative overall picture of the
pattern of condition means.

# Collapse across Noise factor for each participant
by_subj.angle<-group_by(angle.long,Subject,Angle)
angle.subj.marg<-summarize(by_subj.angle,meanRT=mean(RT))

# Convert from long to wide format
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angle.marg.wide<-spread(angle.subj.marg,key=Angle,value=meanRT)
angle.marg.wide<-angle.marg.wide[,-1] # Drop Subject column
print(angle.marg.wide)

## # A tibble: 10 x 3
## `0` `4` `8`
## <dbl> <dbl> <dbl>
## 1 450 510 630
## 2 390 480 540
## 3 570 630 660
## 4 450 660 720
## 5 510 660 630
## 6 360 450 450
## 7 510 600 720
## 8 510 660 780
## 9 510 660 660
## 10 510 540 660

# Perform linear trend analysis
lin.weights<-c(-1,0,1)
lin.mat<-as.matrix(angle.marg.wide)%*%lin.weights # Make sure data matrix is first!
print(lin.mat)

## [,1]
## [1,] 180
## [2,] 150
## [3,] 90
## [4,] 270
## [5,] 120
## [6,] 90
## [7,] 210
## [8,] 270
## [9,] 150
## [10,] 150

# Test whether subject-level composite scores differ from 0 using one-sample t-test
t.test(lin.mat)

##
## One Sample t-test
##
## data: lin.mat
## t = 8.1588, df = 9, p-value = 1.891e-05
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 121.4193 214.5807
## sample estimates:
## mean of x
## 168

The results indicate that there is indeed a highly-significant linear trend among the condition means such
that RT increases linearly with degrees of visual angle. How much variability among the condition means is
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accounted for by this linear trend? To answer this question, we need to compute R2
Alerting using using the

formula:
R2
Alerting = SSψ/SSAngle

where SSψ is calculated using the formula:

SSψ = nb(ψ2)/
a∑
j=1

c2
j

and ψ is equal to:
ψ =

∑
cj Ȳj

n<-10 # Number of participants
b<-2 # Levels of factor B
angle.marg.mean<-colMeans(angle.marg.wide)
print(angle.marg.mean)

## 0 4 8
## 477 585 645

psi<-(-477)+0*585+645
ss.contrast<-n*b*(psi^2)/sum(lin.weights^2) # See equation 12.9 in MDK
ss.angle<-289920 # Taken from ANOVA table

r2.alerting<-ss.contrast/ss.angle
print(round(r2.alerting,digits=2))

## [1] 0.97

Therefore the linear trend accounts for 97% of the variance among the marginal means of Angle!

Further Investigation of Significant Interactions

The significant interaction informs us that the effect of one IV is not the same at each level of the other IV.
However, to better specify these differences, we need to conduct simple main effect tests in which the effect
of one IV is examined at each level of the other IV. Let’s test the simple main effect of Angle at each level
of the Noise variable. This amounts to conducting two one-way repeated measures ANOVAs for Angle - one
with noise present and one with noise absent.

nz.present<-filter(angle.long,Noise=="Present") # get Noise Present data
nz.absent<-filter(angle.long,Noise=="Absent") # get Noise Absent data

ezANOVA(data=nz.present,dv=RT,wid=Subject,
within=Angle,detailed=TRUE) # Do ANOVA looking at effect of Angle for Noise Present

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 9 12211320 257880 426.1745 6.864246e-09 *
## 2 Angle 2 18 371760 43440 77.0221 1.502077e-09 *
## ges
## 1 0.9759188
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## 2 0.5523266
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 Angle 0.710601 0.2549783
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 Angle 0.7755551 7.853739e-08 * 0.9069206 7.731464e-09 *

ezANOVA(data=nz.absent,dv=RT,wid=Subject,
within=Angle,detailed=TRUE) # Do ANOVA looking at effect of Angle for Noise Absent

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 9 7500000 110400 611.413043 1.388034e-09 *
## 2 Angle 2 18 23280 41520 5.046243 1.820292e-02 *
## ges
## 1 0.9801462
## 2 0.1328767
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 Angle 0.8419927 0.5026126
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 Angle 0.8635524 0.02408953 * 1.04986 0.01820292 *

Therefore, each simple main effect test was statistically significant. At this point, we could proceed to do a
series of paired t-tests using the pairwise.t.test function to compare the cell means of the Angle variable
separately for each level of Noise. Alternatively, we could instead perform linear contrasts to test for a
specific pattern of Angle cell means within each Noise condition. Let’s use the latter approach by specifying
two linear contrasts - one for each level of the Noise variable.

nz.present.weights<-c(-1,0,1)
nz.absent.weights<-c(-1,.5,.5)

nz.present.wide<-angle.data[,4:6] # Get columns 4-6 from angle.data
nz.absent.wide<-angle.data[,1:3] # Get columns 1-3 from angle.data

# Test linear contrast for Noise Present
nz.present.linscores<-as.matrix(nz.present.wide)%*%nz.present.weights
t.test(nz.present.linscores)

##
## One Sample t-test
##
## data: nz.present.linscores
## t = 9.9254, df = 9, p-value = 3.808e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
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## 208.4627 331.5373
## sample estimates:
## mean of x
## 270

# Test linear contrast for Noise Absent
nz.absent.linscores<-as.matrix(nz.absent.wide)%*%nz.absent.weights
t.test(nz.absent.linscores)

##
## One Sample t-test
##
## data: nz.absent.linscores
## t = 3.9428, df = 9, p-value = 0.003392
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 24.29637 89.70363
## sample estimates:
## mean of x
## 57

Note that the last contrast (for the nz.absent data) was decided after looking at the data. In this case, we
could use Scheffe’s F to control αFW = .05. The key thing to note here is that for single degree of freedom
contrasts, F = t2, so we’ll need to convert our t-value to an F -statistic, and then compare this F -statistic
to Scheffe’s F. The following code will illustrate how to do this:

n.cond<-3
n.subj<-10

t.obs<-3.9428 # Taken from output above
F.obs<-t.obs^2 # Transfrom t-statistic to F-statistic
print(F.obs)

## [1] 15.54567

F.crit<-qf(p=.95,df1=n.cond-1,df2=(n.cond-1)*(n.subj-1)) # Get critical F-value
F.scheffe<-(n.cond-1)*F.crit # Calculate F-scheffe
F.obs>F.scheffe

## [1] TRUE

Our observed F -value is > F -scheffe, so we can safely reject the null even when controlling αFW = .05.

Split-Plot ANOVA

Model Comparisons

As alluded to earlier, split-plot designs involve the mixture of between- and within-subjects factors usually
in a factorial combination. Such designs are fairly commonplace in experimental psychology so we will cover
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them here. For a design that contains one between-subjects (A) and one within-subjects factor (B), the full
model has the following form:

Yijk = µ+ αj + βk + πi/j + (αβ)jk + (βπ)ki/j + εijk

where µ is the grand mean parameter, αj is the effect of being in group j of the between-subjects factor (A),
βk is the effect of being in condition k of the within-subjects factor (B), (αβ)jk is the effect of the interaction
between the j-th level of A and the k-th level of B, (βπ)ki/j is the effect of the interaction of the k-th level
of B and the i-th subject in the j-th level of A, and εijk is the error for the i-th subject in the j-th level of A
and the k-th level of B. The i/j notation signifies that subjects are nested within the levels of factor A (the
between-subjects factor).

Importantly, the αj , βk, and (αβ)jk terms represent fixed effects, whereas the πi/j and (βπ)ki/j terms are
random effects. In a split-plot design, we are primarily interested in evaluating the fixed effect terms within
the model, which can be done by comparing the full model with a restricted model that omits the term of
interest. As per usual, this comparison is achieved using the familiar formula for an F -test:

F = (ER − EF )/(dfR − dfF )
EF /dfF

To evaluate the main effect of factor A (αj ’s), the F -statistic has the following form:

FA = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA
MSS/A

where MSS/A is the mean-square term associated with subjects nested within group j and corresponds to
the πi/j term in the full model.

The appropriate degrees of freedom are as follows:

(dfR − dfF ) = a− 1

dfF = N − a

To evaluate the main effect of factor B (βk’s), the F -statistic has the following form:

FB = (ER − EF )/(dfR − dfF )
EF /dfF

= MSB
MSB×S/A

whereMSB×S/A represents the mean square for the interaction between factor B and subject i nested within
group j of factor A, and corresponds to the (βπ)ki/j term in the full model.

The appropriate degrees of freedom are as follows:

(dfR − dfF ) = b− 1

dfF = (N − a)(b− 1)

Finally, to evaluate the interaction between factors A and B (αβjk’s), the F -statistic has the following form:

FA×B = (ER − EF )/(dfR − dfF )
EF /dfF

= MSA×B

MSB×S/A

The appropriate degrees of freedom are as follows:

(dfR − dfF ) = (a− 1)(b− 1)

dfF = (N − a)(b− 1)
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Example #2

This example is similar to Example #1 above, but now we are interested in how Age impacts the time required
to detect visual targets at different degrees of visual angle. To address this question, the experimenter recruits
10 young adults and 10 older adults and presents visual targets at either 0, 4, or 8 degrees of visual angle.
This experiments constitutes a 2 × 3 split-plot design with one between-subjects factor (Age), and one
within-subjects factor (Angle).

age.angle.data<-read.table(file="Ch12T15.txt",header=T)
str(age.angle.data)

## 'data.frame': 60 obs. of 4 variables:
## $ Subject: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Age : Factor w/ 2 levels "Old","Young": 2 2 2 2 2 2 2 2 2 2 ...
## $ Angle : int 0 0 0 0 0 0 0 0 0 0 ...
## $ RT : int 450 390 570 450 510 360 510 510 510 510 ...

# Convert Subject and Angle to a factor
age.angle.data$Subject<-as.factor(age.angle.data$Subject)
age.angle.data$Angle<-as.factor(age.angle.data$Angle)

# Compute condition means
age.angle.means<-age.angle.data %>% group_by(Age,Angle) %>% summarize(Mean=mean(RT))
print(age.angle.means)

## # A tibble: 6 x 3
## # Groups: Age [?]
## Age Angle Mean
## <fct> <fct> <dbl>
## 1 Old 0 543
## 2 Old 4 654
## 3 Old 8 792
## 4 Young 0 477
## 5 Young 4 585
## 6 Young 8 645

# Plot the data
with(age.angle.data,interaction.plot(x.factor=Angle,trace.factor=Age,response=RT,las=1,

cex=1.5,bty="n",type="b",pch=c(17,19),
xlab="Degrees of Visual Angle",ylab="RT (ms)"))

axis(side=1,at=c(1,2,3),labels=c("0","4","8")) # add in x-axis with ticks and labels

To conduct a split-plot ANOVA, we could again use the aov function. Note that we specify which of the
two factors is within-subjects using the Error(Subject/Angle) argument.

# Compute 2 X 3 Split-Plot ANOVA using aov
age.angle.aov<-aov(RT~Age*Angle+Error(Subject/Angle),data=age.angle.data)
summary(age.angle.aov)

##
## Error: Subject
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Figure 2: Plot of data from MDK Chapter 12 Table 15

## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 132540 132540 7.276 0.0147 *
## Residuals 18 327900 18217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Subject:Angle
## Df Sum Sq Mean Sq F value Pr(>F)
## Angle 2 435090 217545 143.911 < 2e-16 ***
## Age:Angle 2 21090 10545 6.976 0.00275 **
## Residuals 36 54420 1512
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you can see, the analysis revealed significant main effects of Age, F (1, 18) = 7.28, p = .015 and Angle,
F (2, 36) = 143.91, p < .001 , as well as a significant Age × Angle interaction, F (2, 36) = 6.98, p = .0028 .

However, given that Angle has three levels, we need to consider the possibility that the sphericity assumption
may be violated. Let’s redo the ANOVA using the ezANOVA function from the ez package as it provides
us with a test of the sphericity assumption.

# Compute 2 X 3 Split-Plot ANOVA using ezANOVA function
ezANOVA(data=age.angle.data,dv=RT,wid=Subject,between=Age,within=Angle,detailed=TRUE)

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
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## 1 (Intercept) 1 18 22767360 327900 1249.809332 4.375573e-18 *
## 2 Age 1 18 132540 327900 7.275755 1.473401e-02 *
## 3 Angle 2 36 435090 54420 143.910695 6.728921e-18 *
## 4 Age:Angle 2 36 21090 54420 6.975744 2.751523e-03 *
## ges
## 1 0.98348487
## 2 0.25742920
## 3 0.53227878
## 4 0.05227932
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 Angle 0.936837 0.5743071
## 4 Age:Angle 0.936837 0.5743071
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF]
## 3 Angle 0.9405895 5.769113e-17 * 1.046677 6.728921e-18
## 4 Age:Angle 0.9405895 3.399421e-03 * 1.046677 2.751523e-03
## p[HF]<.05
## 3 *
## 4 *

Since the Mauchley’s test is not significant, we can interpret the raw F - and p-values. As you can see, there
was a significant Age × Angle interaction, implying that we should be conducting follow-up simple main
effects tests.

Simple Main Effects

Within-Subjects Effects at Each Level of Between-Subjects Factor

Suppose we wished to test the simple main effect of Angle for both levels of Age. This would amount to
conducting two one-way repeated-measures ANOVAs that examine the effect of Angle separately for younger
and older adults. To perform this analysis in R, we first need to divide the data into two separate variables
using the filter command based on the level of Age. Then, we simply conduct a one-way repeated-measures
ANOVA on each subset.

young.angle<-filter(age.angle.data,Age=="Young") # Create subset of data for young adults
old.angle<-filter(age.angle.data,Age=="Old") # Create subset of data for older adults

# Perform one-way RM-ANOVA for young adults
ezANOVA(data=young.angle,dv=RT,wid=Subject,within=Angle,detailed=TRUE)

## Warning: You have removed one or more Ss from the analysis. Refactoring
## "Subject" for ANOVA.

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 (Intercept) 1 9 9712830 146070 598.4492 1.526600e-09 * 0.9819926
## 2 Angle 2 18 144960 32040 40.7191 2.086763e-07 * 0.4486953
##
## $`Mauchly's Test for Sphericity`
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## Effect W p p<.05
## 2 Angle 0.960106 0.8497219
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 Angle 0.9616365 3.401705e-07 * 1.217564 2.086763e-07 *

# Perform one-way RM-ANOVA for older adults
ezANOVA(data=old.angle,dv=RT,wid=Subject,within=Angle,detailed=TRUE)

## Warning: You have removed one or more Ss from the analysis. Refactoring
## "Subject" for ANOVA.

## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 9 13187070 181830 652.7175 1.038185e-09 *
## 2 Angle 2 18 311220 22380 125.1555 2.752367e-11 *
## ges
## 1 0.9847505
## 2 0.6038065
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 Angle 0.8142084 0.4394832
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 Angle 0.8433185 8.091608e-10 * 1.016384 2.752367e-11 *

Because the test for each simple main effect above is simply a one-way repeated measures ANOVA, subsequent
comparisons among individual means could use the procedures outlined in the Lab 8 Tutorial.

Between-Subjects Effects at Each Level of Within-Subjects Factor

Alternatively, we could test the simple main effect of Age at each level of the Angle variable. Indeed from
Fig. 2 it appears as though the RT difference between young and older adults is greatest at 8◦. Again, let’s
proceed by dividing the data into groups based on levels of Angle again using the filter command.

a0<-filter(age.angle.data,Angle=="0")
a4<-filter(age.angle.data,Angle=="4")
a8<-filter(age.angle.data,Angle=="8")

a0.aov<-aov(RT~Age,data=a0)
summary(a0.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 21780 21780 3.161 0.0923 .
## Residuals 18 124020 6890
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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a4.aov<-aov(RT~Age,data=a4)
summary(a4.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 23805 23805 3.35 0.0838 .
## Residuals 18 127890 7105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

a8.aov<-aov(RT~Age,data=a8)
summary(a8.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 108045 108045 14.91 0.00114 **
## Residuals 18 130410 7245
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is clear from these analyses that the simple main effect of Age is significant, F (1, 18) = 14.91, p = .001,
only when targets are presented at 8◦ of visual angle.
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